
Nonnegative Quadratics over Stanley Reisner Varieties

Kevin Shu1

1Georgia Institute of Technology

1



Background on Nonnegative and

Sum-of-Squares Polynomials
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Nonnegative Polynomials

Definition

A polynomial f ∈ R[x1, . . . , xn]d is nonnegative if for all x ∈ Rn, f (x) ≥ 0.

Example

f =

(
1

n

n∑
i=1

x2i

)n

−
n∏

i=1

x2i

is nonnegative.
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Nonnegative Polynomials

Definition

A convex cone is C ⊆ Rk so that if x , y ∈ C , x + y ∈ C and if λ ≥ 0, then λx ∈ C .

Nonnegative polynomials form a closed convex cone.

Optimization over slices of the cone of nonnegative polynomials expresses many

difficult problems. For this reason, it is considered hard to check, given a polynomial,

whether or not it is nonnegative.
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Algebraic Certificates

One value of working with polynomials is that we can seek out algebraic sufficient

conditions for nonnegativity. Such a sufficient condition is be a sum-of-squares.

Definition

A polynomial f ∈ R[x1, . . . , xn]2d is sum-of-squares (SOS) if there are

g1, . . . , gk ∈ R[x1, . . . , xn]d so that

f =
k∑

i=1

g2
i .

Being sum-of-squares is considered easy to check, using connections to the field of

semidefinite programming.

The AM-GM inequalities can all be proven by using sum-of-squares.
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Algebraic Certificates

If d = 1, or n = 2, or d = 2 and n = 3, then a polynomial is nonnegative if and only if

it is sum-of-squares.

For all other values of n and d , it is known that there exist nonnegative polynomials

that are not sum-of-squares.
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Gaps between Nonnegative and Sum-Of-Squares

The first nonnegative polynomial that was proven not to be SOS was the Motzkin

polynomial

x4y2 + x2y4 + z6 − 3x2y2z2.

Since then, it has been shown that for large n, almost all nonnegative polynomials are

not sums-of-squares [1].

This suggests that sum-of-squares are limited in their ability to approximate

nonnegative polynomials for large numbers of variables. What can we do to better

understand nonnegativity?
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Nonnegative Polynomials on Varieties

We will introduce a more general setting. Let X be a real projective variety (it is okay

to think of it as a subset of Rn cut out by homogeneous polynomial equations).

Definition

A polynomial f ∈ R[X ]2d is nonnegative if for all x ∈ X , f (x) ≥ 0. We denote the

convex cone of nonnegative quadratics over X by P(X ).

Definition

A polynomial f ∈ R[X ]2d is sum-of-squares if there are g1, . . . , gk ∈ R[X ]d so that

f =
k∑

i=1

g2
i .

We denote the convex cone of nonnegative quadratics over X by Σ(X ).
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Nonnegative Polynomials on Varieties

We now can trade off the complexity of the variety X with the degree d to find

tractable examples of this problem. We can usually just consider quadratic polynomials

over varieties.

Example

Pn - Usual theory of nonnegative quadratics in n variables, so

P(Pn) = Σ(Pn)

Pn × Pm - Quadratics over this variety correspond to maps between spaces of

symmetric matrices. The nonnegative quadratics correspond to maps

preserving the PSD cone, and the sum-of-squares cone correspond to

completely positive maps, which are used in quantum information.

Gr(4, 2) - Quadratics over this variety have connections to Riemannian metrics

over spheres, and these have seen applications.[3]
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Nonnegative Polynomials on Varieties

There is a complete characterization for varieties where the nonnegative and

sum-of-squares quadratics are equal.[2] These are precisely those with

Castelnuovo-Mumford regularity 2.

What happens with other kinds of varieties? We will focus on a very simple kind of

algebraic variety that turns out to have some surprising geometric properties.
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Stanley-Reisner Varieties
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Stanley-Reisner Varieties

A Stanley-Reisner variety is the variety cut out by a square-free-monomial ideal.

Precisely, for some S ⊆ 2[n], we have

X = V(⟨
∏
i∈T

xi : T ∈ S⟩).

We can equivalently think of a Stanley-Reisner variety as being the union of coordinate

planes, so that for some ∆ ⊆ 2[n],

X =
⋃
T∈∆

span{ei : i ∈ T}.
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Stanley-Reisner Varieties and Simplicial Complexes

A Stanley-Reisner variety can be encoded in the combinatorial data of which

coordinate subspaces are contained in the variety.

Definition

A simplicial complex ∆ is a family of subsets of [n] with the property that for any

S ∈ ∆, and any T ⊆ S , T ∈ ∆.

We call S ∈ ∆ a face of ∆, and we call elements of [n] the vertices of ∆.
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Stanley-Reisner Varieties and Simplicial Complexes

The topological realization of a simplicial complex is obtained by gluing together

simplices using the simplicial complex as a guide. This topological realization can be

visualized by drawing simplices for each set that is contained in the complex.

Figure 1: This simplicial complex would be difficult to write down as a family of sets, but this

visualization give us a compact representation.
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Stanley-Reisner Varieties and Simplicial Complexes

The Stanley-Reisner variety corresponding to a complex ∆ is

V(∆) =
⋃
S∈∆

span({ei : i ∈ S}).

For S ∈ ∆, we will call the coordinate subspace span({ei : i ∈ S}) ⊆ V(∆) a face of

V(∆).
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Nonnegative Quadratics over Stanley-Reisner

Varieties

16



Quadratics over Stanley-Reisner Varieties and PSD Matrix Completion

Quadratics over Pn can be represented by symmetric matrices that encode their

coefficients. Quadratics over a Stanley-Reisner variety can be represented by partial

matrices, where we project onto the subset of the entries of the matrix that

correspond to quadratic monomials not contained in the ideal of X .

Example

x21 + x22 + x23 − x1x2.

 1 −1 ?

−1 1 ?

? ? 1


A quadratic form over X = V(⟨x1x3, x2x3⟩), and a representing partial matrix.
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Quadratics over Stanley-Reisner Varieties and PSD Matrix Completion

Sum-of-squares quadratics over X are precisely those that extend to nonnonegative

quadratics over Pn, so these correspond to PSD-completable partial matrices.

Nonnegative quadratics over X are only nonnegative on certain subspaces of Pn, so

these can be thought of as partial matrices where certain submatrices are PSD.

These two convex cones are useful in sparse semidefinite programming, since it is often

easier to check the nonnegativity condition on the small subspaces than the whole of

Pn.
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Extreme Nonnegative Quadratics over Stanley-Reisner Varieties

Extreme nonnegative quadratics are nonnegative quadratics on Stanley-Reisner

varieties that cannot be written as the sum of two linearly independent nonnegative

quadratics.

Extreme rays of a convex cone are in some senses the ‘irredudcable’ elements of the

cone, and much can be understood about the cone from their structure. We will be

investigating how the extreme rays of the nonnegative quadratic cone over

Stanley-Reisner varieties relate to the geometric structure of its underlying simplicial

complex.
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Extreme nonnegative quadratics over Stanley-Reisner Varieties

Over Pn, extreme nonnegative quadratics are exactly squares of linear forms. We say

that such a quadratic form has rank 1.

For any variety, the square of a linear form will be extreme. For q to be extreme in

V(∆), it suffices for the restriction of q to any faces of V(∆) to be extreme.

Example

Let ∆ = 2[3] − {1, 2, 3} be an empty triangle complex. Let X = V(∆).

q = x21 + x22 + x23 − 2x1x2 − 2x1x3 − 2x2x3

becomes rank 1 when restricted to any 2-dimensional coordinate subspace, but, it is

not the square of any linear form.

We call such a quadratic form which is rank 1 when restricted to any face of V(∆)

locally rank 1.
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Extreme nonnegative quadratics over Stanley-Reisner Varieties

A sum-of-squares quadratic on Pn is rank k when it is the sum of at most k squares of

linear forms.

We say that q ∈ P(V(∆)) is locally rank k if for any face of V(∆), q restricted to that

face of V(∆) is rank k .

Question: What are the possible ranks of extreme nonnegative quadratics on

V(∆)?

21



Some examples

Let ∆ =
( [n]
≤n−1

)
be the simplicial complex consisting of all sets of size at most n− 1 in

[n]. For n ≥ 2, consider

q =
n∑

i=1

x2i − 2

n − 2

∑
i ̸=j

xixj

q can be seen to have local rank n − 2, and is also extreme.

Figure 2: A depiction of
(
[4]
≤3

)
, which is

topologically a 2D sphere.

All extreme rays of P(V(∆)) are either

locally rank n − 2, or the square of a linear

form. Interesting that topologically, this is

an n − 2 dimensional sphere. Is there a

connection here?
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Some examples

∆ is said to be purely 1-dimensional if every maximal face has 2 elements. These are

in natural correspondance with graphs.

Theorem

q ∈ P(V(∆)) is extreme nonnegative if and only if it is locally rank 1.

Idea: write

q =
n∑

i=1

aix
2
i +

∑
i ̸=j

aijxixj

If for some facet {i , j} of V(∆), q is not rank 1, then we can add and subtract a small

amount from aij , and keep q nonnegative, which contradicts the fact that q is

extreme.
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Some examples

∆ is given by the following picture:

∆ is not a purely 1-dimensional complex, but it only has locally rank 1 extreme rays. Is

this related to the fact that ∆ is homotopy equivalent to a purely 1-dimensional

complex?
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A Categorical Viewpoint
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A Categorical Viewpoint

• V turns a simplicial complex into a real projective variety.

• P and Σ turn real projective varieties into convex cones.

We are considering the composition of these two transformations:

∆ 7→ V(∆) 7→ P(V(∆)).

Idea: Enrich the classes of simplicial complexes and varieties into a category, and these

transformations into functors. Then study the nonnegative quadratics using

combinatorial maps between simplicial complexes.
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Category of Simplicial Complexes

Let ∆ and Γ be simplicial complexes. If ϕ : ∆ → Γ is a map from the vertices of ∆ to

vertices of Γ, we say that ϕ is simplicial if the image of every face of ∆ is a face of

Γ.

Simplicial maps make the class of simplicial complexes into a category.
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V as a functor

Let ϕ : ∆ → Γ be simplicial. Let V(ϕ) be a linear map from V(∆) to V(Γ) given by

extending the following map by linearity:

V(ϕ)(ei ) = eϕ(i).

This makes V into a functor from the category of simplicial complexes to the category

of real algebraic varieties and linear maps.
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P as a functor

Let ϕ : X → Y be a linear map between real projective varieties. Then, consider the

pullback map ϕ∗ on the level of quadratic forms, so that

ϕ∗(q)(x) = q(ϕ(x)).

It can easily be seen that thus sends P(X ) to P(Y ) linearly. This makes P into a

contravariant functor from the category of real projective varieties with linear maps to

convex cones with linear maps.
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Idea: We now can turn any simplicial map from ∆ to Γ into a linear map from

P(V(∆)) to P(V(Γ)). Can we use this to study nonnegative quadratics?
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Constructions of Extreme Rays with High Rank

Theorem
Let ∆ be a simplicial complex which is an d dimensional combinatorial manifold .

Then there is a locally rank d extreme ray of P(V(∆)).

Loosely, the topological realization of ∆ should be a manifold, and there should be an

atlas of that manifold compatible with the simplicial complex structure.

Proof idea: The hypothesis implies that ∆ has a particularly nice simplicial map to( [d+2]
≤d+1

)
, which sends all but one face of ∆ to a single vertex. The pullback of the

locally rank d extreme ray of
( [d+2]
≤d+1

)
is locally rank d and extreme in P(V(∆)).
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A depiction of a nice map from an octahedral complex to
( [4]
≤3

)
.
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Chordal Complexes

Definition
The clique complex of a graph G is

∆ = {S ⊆ V (G ) : S induces a clique of G}.

Aside: This is right adjoint to the forgetful functor that sends a simplicial complex to

the graph consisting of all its 1-dimensional faces.

Definition
A simplicial complex is said to be chordal if it is the clique complex of a graph with

no induced cycles of size at least 4.
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Chordal Complexes

A theorem of Froberg implies that X (∆) has Castelnuovo-Mumford regularity 2 if and

only if it is chordal, so chordal complexes are precisely those where sums-of-squares

and nonnegative quadratics are equal. This suggests that the nonnegative quadratics

on a chordal complex are significantly better behaved than nonnegative quadratics over

nonchordal complexes.

Idea: Take a general simplicial complex ∆ and express it as a quotient of a chordal

complex. The pullback map will let us study nonnegative quadratics over ∆ as

sum-of-squares quadratics over a chordal complex.
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Chordal Complexes

Definition
A simplcial map ϕ : Γ → ∆ is a chordal quotient if Γ is chordal, and every face of ∆

is the image of some face of Γ.

Theorem
A simplcial map ϕ : Γ → ∆ is a chordal quotient, and then every extreme ray of

P(V(∆)) is has local rank at most

|Γ| − |∆|,

where | · | denotes the number of vertices of a simplicial complex.

Idea: If q is extreme in P(V(∆)), then pull q back to P(V(Γ)) and then use the

sum-of-squares structure to find a decomposition (this can be done using dimension

counting). 35



Chordal Complexes

The above example is the image of a chordal quotient that uses at most 1 extra vertex,

and this implies that every extreme ray of this complex has local rank 1.
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A More General Class

In fact, there is a much more general class of simplicial complexes that have only

locally rank 1 extreme rays: we show that these can be constructed by starting with a

graph, and replacing the edges of that graph by chordal complexes. [4]

Figure 3: An example of a thickened graph. To the left, is a graph, and to the right is a

thickening, where some of the edges have been replaced by other chordal graphs.

For complexes with only locally rank 1 extreme rays, there is a nice classification of the

extreme rays up to a natural torus action in terms of H1(∆,Z/2Z). This has been
useful for studying quantitative questions about the relative sizes of P(∆) and

Σ(∆).
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Open Questions

• Does every complex with H i (∆,Z) ̸= 0 for some i have an extreme ray with local

rank at least i? This weakens the assumptions in our theorem on combinatorial

manifolds.

• Can we find appropriate generalizations of these ideas that work for other

projective varieties?
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