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SUMMARY

This thesis broadly concerns the usage of techniques from algebra, the study of

higher order structures in mathematics, toward understanding difficult optimization

problems. Of particular interest will be optimization problems related to systems

of polynomial equations, algebraic invariants of topological spaces, and algebraic

structures in convex optimization.

We will discuss various concrete examples of these kinds of problems. Firstly,

we will describe new constructions for a class of polynomials known as hyperbolic

polynomials which have connections to convex optimization. Secondly, we will describe

how we can use ideas from algebraic geometry, notably the study of Stanley-Reisner

varieties to study sparse structures in semidefinite programming. This will lead

to quantitative bounds on some approximations for sparse problems and concrete

connections to sparse linear regression and sparse PCA. Thirdly, we will use methods

from algebraic topology to show that certain optimization problems on nonconvex

topological spaces can be turned into convex problems due to a phenomenon known

as ‘hidden convexity’. Specifically, we give a sufficient condition for the image of a

topological space under a continuous map to be convex, and give a number of examples

of this phenomena with practical importance. This unifies and generalizes a number

of existing results. Finally, we will describe how to use techniques inspired by the sum

of squares method to find new variants of gradient descent which converge faster than

typical gradient descent on smooth convex problems.

ix



CHAPTER 1

INTRODUCTION

1.1 High level overview

Modern large scale algorithmic decision making problems have led to a recent explosion

of mathematical problems related to optimization. These ask the question of how to

best utilize some limited collection of resources or else how to make good decisions

under complicated constraints. This thesis will describe how these questions connect

naturally to ideas from algebra and in particular, the study of polynomial equations

and algebraic invariants in topology.

The appearance of algebra in optimization has a similar underlying cause to that

of convexity in optimization: both are ways of enforcing a global structure on an

optimization problem. This global structure is important in cases in which some

property of a solution is a hard requirement but difficult to enforce. In real world

examples such as the management of a power plant or an aircraft, mistakes may not be

acceptable. In these cases, mathematical guarantees that they will not fail in normal

operation are needed, and such guarantees cannot be provided by heuristics or local

optimization methods. These guarantees are also needed when these applications

are then applied to other areas of formal mathematics, which require rigorous proof

of correctness for these solutions. Algebraic methods offer these kinds of global

guarantees.

From a mathematical perspective, interesting questions come about from consider-

ing computational problems with complicated constraints which arise from geometric

or physical considerations. Much of our discussion will concern the interplay between

convex optimization and algebraic geometry. While these subjects may seem vastly
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different, in a sense, they can both be understood as different generalizations of linear

algebra, which we may think of as the study of linear equations. Convex geometry

can be understood loosely as the study of linear inequalities, while algebraic geometry

can be understood loosely as the study of higher degree polynomial equations. For

this reason, many higher order concepts from linear algebra such as matrix groups

or the spectral theorem can be understood through an algebraic geometry lense or a

convex geometry lense. Many such connections will play prominent roles in various

parts of this thesis.

To give an explicit example of the type of work described here, we will give a

high level overview of the results of Chapter 5. This chapter concerns a method for

minimizing a class of functions using gradient descent. For a function f starting at

some point x0, the method iterates the update rule

xt = xt−1 + ht−1∇f(xt−1).

Here, the choice of step size sequence ht does not depend on the function f and is fixed

in advance of the algorithm. While different methods for performing this minimization

have been discovered, within this class of optimization methods, it was not known

how to asymptotically improve on the sequence of step sizes where ht is constant, in

which case the gap in the value of f to the minimum shrinks at a rate of O(1
t
). The

basic issue is that if ht are too large, then this method may begin to diverge, while

steps that are too small will lead to slow convergence.

The ‘meta-optimization’ problem is therefore to find the choice of ht so that this

iteration converges to the minimum as fast as possible, and it is necessary to alternate

between larger steps that move toward the minimum quickly and smaller steps that

correct errors that the larger steps may introduce. Therefore, in order to improve the

asymptotics of this method, global considerations are necessary due to the fact that
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the objective value may not be decreasing at every iteration. For this, we consider

the set of L-smooth convex functions, a natural class of functions which satisfy the

inequalities that for any x, y ∈ Rn,

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩+ 1
2L∥∇f(x)−∇f(y)∥2.

These are polynomial inequalities in terms of the values of f and its gradients,

and while they are individually not very hard to prove, by taking combinations of

these inequalities, we are able to find a new sequence of step sizes achieving a rate of

O( 1
t1+ϵ ) for ϵ > 0. Once an appropriate combination is found, elementary algebraic

manipulations can be used to derive the appropriate inequalities showing the desired

convergence rate.

1.1.1 Summaries of chapters

We will summarize the contents of the individual chapters here, though some terms

have yet to be defined fully.

Chapter 2 concerns hyperbolic polynomials, a class of polynomials which have arisen

in a number of different contexts ranging from differential equations to combinatorics.

These polynomials can be viewed as satisfying a generalized version of the spectral

theorem from linear algebra, and they have associated to them convex cones known as

hyperbolicity cones which generalize the convex cone of positive semidefinite matrices.

This chapter will primarily be focused on some new constructions of such hyperbolic

polynomials which may have utility in future applications, though this chapter is

primarily focused on their mathematical structure.

Chapter 3 concerns sparsity in semidefinite programming. There are a variety of

different notions of sparsity. One notion concerns situations in which the input to some

optimization problem uses far fewer parameters than a general input instance, and
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how to exploit that structure to improve efficiency. Another notion concerns situations

in which the output to be found is desired to be sparse in the sense of having many

zero entries. This chapter describes a framework for understanding sparse structures

in the context of a particularly prominent kind of optimization known as semidefinite

programming. This offers both structural and quantitative analysis of these sparse

problems and gives applications to sparse versions of linear regression and PCA, as

well as some interesting optimization problems regarding eigenvalues of certain classes

of matrices.

Chapter 4 concerns hidden convexity. These types of results reduce complicated

optimization problems over nonconvex domains to convex optimization problems which

are often tractable. In particular, the perspective taken in this chapter shows how to

prove that the images of certain topological spaces under continuous maps are convex

using algebraic topology. This proves both new results and unifies and simplifies a

number of existing theorems concerning hidden convexity in the context of Lie groups.

We also give an application to the problem of finding a rotation matrix that maps one

set of points to another subject to a linear constraint on that matrix.

Chapter 5 concerns accelerating gradient descent using long steps. Here, we consider

the problem of choosing step sizes in a common iterative method for minimizing a

convex function. We show that by occasionally taking exceptionally large steps, it is

possible to achieve faster convergence rates to the optimum than is possible using steps

of constant size. These results are shown using the algebraic technique of combining a

number of simple inequalities regarding our function class in somewhat complicated

ways.

Next, we will give some basic definitions that are common to a number of the

chapters in this thesis.
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1.2 Preliminary notions

1.2.1 Algebraic geometry

Algebraic geometry for our purposes will concern the study of polynomial equations and

their solution sets. We will use k[x1, . . . , xn] to denote the vector space of polynomials in

n variables with coefficients in a field k. Given a collection of polynomials p1, . . . , pm ∈

k[x1, . . . , xn], we let

V(p1, . . . , pm) = {x ∈ kn : p1(x) = 0 and p2(x) = 0 . . . and pm(x) = 0}.

A set of this form is said to be Zariski closed, and it is noteworthy that any Zariski

closed set has the property that its complement is either empty or dense.

We will say a polynomial p is nonnegative if p(x) ≥ 0 for all x ∈ Rn, and we will

denote this by writing p ≥ 0.

We will not require much detailed theory from algebraic geometry here, though we

will recount some varieties of particular interest to us. We will define Rn×n to be the

vector space of n× n real matrices. We will also define Rn×n
sym to be the vector space of

symmetric matrices. We define

SO(n) = {X ∈ Rn×n : X⊺X = I, and det(X) = 1}.

Here, I denotes the identity matrix.

1.2.2 Convex geometry

A convex set C is a subset of Rn with the property that if x, y ∈ C then the line

segment joining x and y is also contained in C. Equivalently, a convex set is the set

of points satisfying a (possibly infinite) collection of linear inequalities of the form

⟨v, x⟩ ≥ c for some v ∈ Rn and c ∈ R. The convex hull of a set of points S ⊆ Rn is
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the intersection of all convex sets containing S, and we will denote this by conv(S).

A convex cone is a convex set which has the property that if x ∈ C, then λx ∈ C

for λ > 0.

An extreme point of a convex set C is a point x which is not of the form x =

(1 − λ)z1 + λz2, where z1, z2 ̸= x and λ ∈ [0, 1]. Similarly, we say that if C is a

convex cone, and x ∈ C, then x spans an extreme ray of C if x is not of the form

x = (1− λ)z1 + λz2 for linearly independent z1 and z2.

Particularly important convex cones include the nonnegative orthant Rn
+ = {x ∈

Rn : xi ≥ 0 for i = 1 . . . n} and the positive semidefinite (PSD) cone

Sn×n
+ = {X ∈ Rn×n

sym : for all v ∈ Rn, v⊺Xv ≥ 0}.

If X ∈ Sn×n
+ , we will write X ⪰ 0.

We will often refer to conical optimization problems, which for a given convex cone

C are optimization problems of the form

max ⌋(x)

s.t. A(x) = b

x ∈ C.

(1.2.1)

Here, ⌋ : Rn → R, A : Rn → Rm are linear maps, and b ∈ Rm.

A conical optimization problem over Rn
+ is a linear program, and one over Sn×n

+ is

a semidefinite program.

A convex function is a function satisfying the property that the epigraph {(x, y) :

y ≥ f(x)} is convex, and a function is concave if its negative is convex.
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1.2.3 Convex linear algebra

Here, we will recount some convexity properties of the eigenvalues of symmetric

matrices, some of which we will need for our analysis. In some places, these historical

results will serve as a backdrop for our further exploration of the connections between

convex geometry and algebra. We will begin by recalling the spectral theorem.

Theorem 1.2.1. If X ∈ Rn×n
sym , then there exists some U ∈ SO(n) and a diagonal

matrix D ∈ Rn×n so that

X = UDU⊺.

Equivalently, X has n real eigenvalues (counting multiplicity) and the eigenspaces

associated to distinct eigenvalues are orthogonal.

While this theorem does not appear to have much to do with convexity, it can

be seen to underlie the fact that the set of symmetric matrices with nonnegative

eigenvalues is a convex set using the theory of hyperbolic polynomials described in

Chapter 2. We will typically denote the eigenvalues of a symmetric matrix X by

λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X).

When referring to the largest or smallest eigenvalues of a matrix X, we will sometimes

use the notation λmin(X) and λmax(X) to avoid confusion.

The spectral theorem is also closely connected to many other convexity results in

linear algebra. For example, using the general theory of hyperbolic polynomials, the

following can be shown (though other proofs are available):

Theorem 1.2.2. The polynomial log(det(X)) is concave on Sn×n
+ .

Using this, we can show the Hadamard inequality (this proof was communicated

to us by James Saunderson in private communication). For X ∈ Rn×n, we will use
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the notation diag(X) ∈ Rn to denote the diagonal of X, and for x ∈ Rn, we use the

notation Diag(x) to denote the diagonal matrix whose diagonal entries are the entries

of x.

Theorem 1.2.3. If X ∈ Sn×n
+ , then det(X) ≤ ∏n

i=1 Xii.

Proof. Let x = diag(X). We have the following formula, which can be proven by

considering the sum entry by entry:

Diag(x) = 1
2n

∑
s∈{−1,1}n

Diag(s)XDiag(s).

By concavity, we have that

log
(

n∏
i=1

Xii

)
= log(det(Diag(x)))

= log
det

 1
2n

∑
s∈{−1,1}n

Diag(s)XDiag(s)


≥ 1
2n

∑
s∈{−1,1}n

log (det (Diag(s)XDiag(s)))

= log (det (X)) .

Here, we have used the fact that det (Diag(s)XDiag(s)) = det (X) when s ∈ {−1, 1}n.

This shows the desired result.

We will now recall the Schur-Horn theorem. For a permutation π ∈ Sn and a

vector v ∈ Rn, we will write π(v) to denote the vector where π(v)i = vπ−1(i). We will

also need to define the variety of symmetric matrices with fixed eigenvalues. That is,

for µ ∈ Rn, we let

MR
µ = {X ∈ Rn×n

sym : The eigenvalues of X are µ}.

To see that this is in fact an algebraic variety, notice that it is Zariski closed, as it is
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precisely the set of symmetric matrices X so that

det(X − tI) = (t− µ1)(t− µ2) . . . (t− µn),

and by comparing the two polynomials coefficient-by-coefficient, one obtains a set of

polynomials whose vanishing defines MR
µ . To see that it is irreducible, notice that it

is the image of the irreducible variety SO(n) under the the polynomial map sending

U to UDiag(µ)U⊺.

Theorem 1.2.4. The image of MR
µ under the linear map diag is precisely conv{π(µ) :

π ∈ Sn}.

We will give related ‘hidden convexity’ theorems in Chapter 4.

We also recall the Cauchy interlacing theorem. If S ⊆ [n] and X is an n×n matrix,

then the principal submatrix of X indexed by S is the |S| × |S| matrix given by

X|S = (Xij)i,j∈S.

Theorem 1.2.5. Let X be an n × n symmetric matrix, and let Y be a principal

submatrix of X. For each i = 1, . . . , k,

λi(X) ≤ λi(Y ) ≤ λi+n−k(X).

It is known that in fact, the Cauchy interlacing inequalities completely specify how

the eigenvalues of a principal submatrix of a general matrix relate to the eigenvalues

of the whole matrix. In Chapter 3, we give a sort of converse inequality where if the

eigenvalues of all of the k × k principal submatrices of the matrix X are constrained,

then in fact the eigenvalues of X are constrained in a way that is not given by the

interlacing inequalities.

We will end this section with two related facts that are corollaries of the Cauchy
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interlacing theorem, one of which appears to be new. Firstly, we recall that the

Hadamard product of two n× n matrices is the matrix X · Y where for each i, j ∈ [n],

(X · Y )ij = XijYij.

Theorem 1.2.6. If X and Y are symmetric matrices, then

λmin(X · Y ) ≥ min
i,j∈[n]

λi(X)λj(Y ),

and in particular, if X and Y are PSD, then X · Y is as well.

Proof. Notice that while mini,j∈[n] λi(X)λj(Y ) is invariant to change of basis in both

X and Y , X ·Y is highly basis dependent. For this reason, it is natural to relate X ·Y

to another, larger matrix which has better basis independent properties.

Consider the Kronecker product X ⊗ Y , an n2 × n2 which represents the tensor

product of the linear maps associated to X and Y . In coordinates, we may index the

entries of X ⊗ Y by ordered pairs, so that

(X ⊗ Y )(ij)(kℓ) = XikYjℓ.

It is possible to explicitly construct a basis of eigenvectors of X ⊗ Y to show that the

eigenvalues of X ⊗ Y are precisely those real numbers which can be represented as

λi(X)λj(Y ) for i, j ∈ [n].

Now, note that X · Y is the principal submatrix of X ⊗ Y obtained by restricting

to rows indexed by pairs (ii). The eigenvalue bounds then follow from the Cauchy

interlacing formula.

Secondly, we will recall that the Schur complement of a matrix X with block

decomposition

X =

A B

C D


10



with respect to the k×k principal submatrix A is X/A = D−CA−1B. More generally,

if S ⊆ [n], we denote by X \ S = X|Sc − XSc,SX|SXS,Sc . Here, XS,T denotes the

(possibly nonprincipal) submatrix of X indexed by the sets S and T . We will first

note a formula for the entries of X \A, which is cited in [1] and which we found in [2].

Lemma 1.2.7. Suppose X ∈ Rn×n and S ⊆ [n] satisfies that X|S is nonsingular. For

any i, j ∈ Sc,

(X \ S)ij = 1
det(X|S) det(XS∪i,S∪j).

Next, we will show an analogue of Theorem 1.2.6, which to our knowledge is novel.

Theorem 1.2.8. If X is a symmetric matrix, and S ⊆ [n] is of size k, then

λmin(X \ S) ≥ 1
det(X|S) min

T⊆[n]
|T |=k+1

∏
i∈T

λi(X).

In particular, if X is PSD, then

λmin(X \ S) ≥
∏k
i=1 λi(X)

det(X|S) λk+1(X).

Proof. Here, we make use of the notion of a wedge power of a matrix, which is correctly

defined in terms of exterior algebras. For us, if X is an n× n matrix, we define the

matrix ∧kX to be a
(
n
k

)
×
(
n
k

)
matrix, whose entries are indexed by subsets of [n] of

size k, and for S, T ⊆ [n] with |S| = |T | = k,

(∧kX)ST = det(XST ).

While it is not clear from this coordinate focused definition, in fact, this wedge

power satisfies ∧k(XY ) = (∧kX)(∧kY ), and it can be shown by explicitly constructing

eigenvectors that the eigenvalues of ∧kX are precisely the possible values of ∏i∈S λi(X)

as S ranges over sets of size k.

11



Next, we note that X \ S is precisely the principal submatrix of 1
det(X|S) ∧

k+1 X

corresponding to those sets of the form S ∪ i for i ∈ Sc by the previous lemma.

Therefore, the theorem follows from Cauchy interlacing.
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CHAPTER 2

HYPERBOLIC POLYNOMIALS

2.1 Preliminary notions

2.1.1 Definitions

The main subject of this chapter are polynomials which have real rootedness properties

with interesting connections to convex optimization.

Definition 2.1.1. A homogeneous polynomial p ∈ R[x1, . . . , xn] is said to be hyperbolic

with respect to v ∈ Rn if p(v) ̸= 0 and for every x ∈ Rn, the univariate polynomial

px(t) = p(x+ tv)

has only real roots.

Example 2.1.1. If we let X be a symmetric matrix of indeterminants, then the

polynomial det(X) ∈ R[X] is hyperbolic with respect to the identity matrix I ∈ Rn×n
sym .

This follows because the univariate polynomial det(X + tI) has roots equal to the

−λ1, . . . ,−λn, where the λi are the eigenvalues of X, and these are real by the spectral

theorem.

A related class of polynomials are stable polynomials, which are polynomials

p ∈ C[z1, . . . , zn] with the property that p(z1, . . . , zn) ̸= 0 when zi are all complex

numbers with positive imaginary part. A homogeneous polynomial p ∈ R[x1, . . . , xn]

is stable if and only if it is hyperbolic with respect to every vector in the positive

orthant.[3] Hyperbolic polynomials have been used in proofs of deep results in a variety

of fields ranging from differential equations to combinatorics [4, 5, 6, 7, 3].
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Associated to a given hyperbolic polynomial is a closed convex cone with nonempty

interior known as its hyperbolicity cone.

Definition 2.1.2. Let p ∈ R[x1, . . . , xn] be hyperbolic with respect to v ∈ Rn. The

hyperbolicity cone Λv(p) of p is defined in any of the following equivalent ways:

1. Λv(p) = {x ∈ Rn : p(x+ tv) > 0 when t > 0}.

2. Λv(p) is the set of x where all roots of the polynomial p(x− tv) are nonnegative.

3. Λv(p) is the closure of the connected component of Rn \V(p) containing v, where

V(p) is the set of x for which p(x) = 0.

4. Λv(p) is the set of points where the coefficients of the univariate polynomial px(t)

are nonnegative.

In addition, if u ∈ Λv(p), then p is hyperbolic with respect to u and v ∈ Λu(p).

It is not hard to see using these definitions that the hyperbolicity cone of the de-

terminant polynomial is precisely the cone of positive semidefinite matrices. The

success of semidefinite programming has lead to analogous interest for hyperbolicity

cone programming.

For a given hyperbolic polynomial p, a hyperbolicity cone program is an optimiza-

tion problem of the form
max ⟨c, x⟩

s.t. Ax = b

x ∈ Λv(p)

(2.1.1)

Here, c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Such problems have been studied extensively [8,

9]. Of particular note is the fact that the function − log(p) serves as a self-concordant

barrier function for the hyperbolicity cone of p [10], which enables interior point

methods to be applied to this problem.
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2.1.2 Hyperbolic optimization and polynomial nonnegativity

One application of such hyperbolicity cone programs is towards certifying the non-

negativity of polynomials. In [11], it was shown that Λv(p) is a slice of the cone of

nonnegative polynomials. Explicitly, if we let Dup denote the directional derivative of

p with respect to the vector u, then

Λv(p) = {u ∈ Rn : DupDvp− pDuDvp ≥ 0}.

Here, the polynomial ∆u,vp = DupDvp− pDuDvp is known as the mixed derivative of

p.

This was further extended in [12], which shows that a matrix known as the

Bézoutian of p, denoted Bv(p) is positive semidefinite for all x. They use this to define

the notion of a hyperbolic certificate of nonnegativity in such a way that a polynomial

is a sums of squares if and only if it has a hyperbolic certificate of nonnegativity where

the underlying polynomial is the determinant.

Remark 1. It is not hard to show that every sum of squares polynomial can be written

as ∆u,vp(f1, . . . , fk) for some quadratic polynomial p and polynomials f1, . . . , fk, i.e.

that every sum of squares polynomial has a hyperbolic certificate of nonnegativity in a

certain sense. This is because it suffices to show that for each k ≥ 1, the polynomial∑k
i=1 x

2
i can be written as ∆u,vp for some hyperbolic polynomial. In this case, we may

take

p = 2zw + (z + w)
n∑
i=1

xi +
∑
i ̸=j

xixj.
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This polynomial is stable, which can easily be checked because p =



z

w

x1

. . .

xn


A
(
z w x1 . . . xn

)
,

where A is a matrix with nonnegative entries and exactly one positive eigenvector,

and it is known that all such polynomials are stable [3]. Moreover, we have that
∂
∂z
p ∂
∂w
p − p ∂

∂w
∂
∂z
p = ∑k

i=1 x
2
i . This construction is unsatisfying, because it does not

give any insight as to how to find a sum of squares decomposition of f .

While it is true that for any polynomial p hyperbolic with respect to v, the

mixed derivative ∆v,vp is nonnegative, the converse is not always true. However, it is

noteworthy that there is a partial converse, which we will prove here for later reference.

Theorem 2.1.3. Suppose that Dvp is hyperbolic with respect to v, and also that ∆v,vp

is globally nonnegative. Also assume that there is some x so that the polynomials px(t)

and d
dt
px(t) are square-free (i.e. nonzero with no root of multiplicity greater than 1).

Then p is hyperbolic with respect to v.

Proof. We wish to show that for all x, px(t) is real rooted. Firstly, because the property

of being real rooted is closed in the set of univariate polynomials, it suffices to show

that px(t) is real rooted for a dense set of x. Because there is some x satisfying the

condition that px(t) and d
dt
px(t) are square-free, and the set of x failing this condition

is Zariski closed, a dense set of x satisfies this condition.

We now note that for any fixed x,

∆v,vp(x+ tv) = ((Dvp)2 − pD2
vp)(x+ tv) =

(
d

dt
px(t)

)2

− px(t)
d2

dt2
px(t).

Therefore, for each fixed x, the mixed derivative of px(t) is nonnegative.

It remains to show that if g(t) is a square-free univariate polynomial with a square

16



free derivative; d
dt
g(t) is real rooted, and the mixed derivative of g is nonnegative, then

g is real rooted. For this, we note that

(
d

dt
g(t)

)2

− g(t) d
2

dt2
g(t) = −g(t)2 d

dt

(
d
dt
g(t)
g(t)

)
.

Consider the rational function
d
dt
g(t)
g(t) , and note that it vanishes at the d − 1 roots

of d
dt
g(t), since g(t) and d

dt
g(t) have no common zeros. Also note that there are 2

additional ’zeros’ of this function at ∞ and −∞, in the sense that limt→±∞
d
dt
g(t)
g(t) = 0

by considering the degree of this rational function. Let r and s be two consecutive zeros

of d
dt
g(t), i.e. zeros of this polynomial so that there are no zeros in the interval (r, s).

If
d
dt
g(t)
g(t) were differentiable on the interval (r, s), then because −g(t)2

(
d
dt

d
dt
g(t)
g(t)

)
≥ 0,

d
dt
g(t)
g(t) would monotonic. However, a monotonic function on [r, s] that vanishes at r

and s would be identically zero, which is a contradiction. We can conclude that
d
dt
g(t)
g(t)

must have a pole in the interval [r, s], implying that g(t) must vanish in this interval.

There are d intervals of this form, so we conclude that g(t) must have at d real

roots, as desired.

Remark 2. Note that the example g(t) = t4 − 1 has a real rooted derivative, and

its mixed derivative is 4t2(t4 + 3) ≥ 0, but g has nonreal roots. This shows that the

additional requirement that d
dt
px(t) be square-free for some x is required.

2.1.3 Hyperbolicity preservers

We conclude our historical remarks on hyperbolic polynomials with some facts about

hyperbolicity preservers. It follows from Rolle’s theorem that if p is a real rooted

univariate polynomial, then d
dt
p is real rooted. Similarly, if p is hyperbolic with respect

to v, and u ∈ Λv(p), then Dup is also hyperbolic with respect to v.

Motivated by this example, we consider the following definition of a hyperbolicity

preserver:
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Definition 2.1.4. Let U ⊆ R[x1, . . . , xn] and V ⊆ R[y1, . . . , ym] be linear subspaces,

and let u ∈ Rn and v ∈ Rm. We say that a linear map T : U → V is a hyperbolicity

preserver if for every p ∈ U that is hyperbolic with respect to u, T (p) is hyperbolic

with respect to v.

We will also refer to univariate hyperbolicity preservers. It is not hard to see that if

g(t) is a univariate polynomial, then g is real rooted if and only if the homogenization

of g, denoted here by gh(s, t), is hyperbolic with one of the two coordinate vectors.

Similarly, if R[t]n denotes the vector space of univariate polynomials of degree at

most n, then a linear map T : R[t]n → R[t]d sends real rooted polynomials to real

rooted polynomials if and only if T h : R[s, t]n → R[s, t]d preserves hyperbolicity in a

coordinate direction in the sense of the previous definition. For this reason, we will

also say that the map T : R[t]n → R[t]m is a hyperbolicity preserver.

We will say that a linear map T : R[t]n → R[t]d is diagonal if there are constants

γi so that T (tn−i) = γit
d−i for each i ≤ min{d, n}. An important result of Schur

and Pólya in [13] characterizes hyperbolicity preservers T : R[t]n → R[t]d which are

diagonal.

Theorem 2.1.5. Let T : R[t]n → R[t]d be a diagonal linear map. Then T is a

hyperbolicity preserver if and only if T ((t− 1)n) has real roots, all with the same sign.

We will also recount the theory of stability preservers developed by Borcea and

Brändén in [6] for completeness. Fix some κ ∈ Nn and let R[x1, . . . , xn]κ denote

the vector space of polynomials where the degree of xi is at most κi for each i. If

γ ∈ Nn, we then say that a linear map T : R[x1, . . . , xn]κ → R[x1, . . . , xn]γ is a stability

preserver if the image of every stable polynomial is also stable. We may extend T

to a linear map T : R[x1, . . . , xn, w1, . . . , wn]κ → R[x1, . . . , xn]γ by treating the wi as

constants, i.e. we let

T (wαxβ) = wαT (xβ).
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Here, if α ∈ Nn, we denote by wα = wα1
1 · · · · · wαn

n and xα = xα1
1 · · · · · xαn

n .

Theorem 2.1.6. T : R[x1, . . . , xn]κ → R[x1, . . . , xn]γ is a stability preserver if and

only if either the image of T is 1-dimensional and spanned by a stable polynomial, or

T ((z + w)κ)

is stable.

2.2 Symmetric hyperbolic polynomials

A polynomial p ∈ R[x1, . . . , xn] is symmetric if it is invariant under permutations of its

variables. A well known class of symmetric polynomials are the elementary symmetric

polynomials, defined as

en,k(x) =
∑
S⊆[n]
|S|=k

∏
i∈S

xi.

We will often suppress the dependence of en,k on n when it is convenient. These

polynomials generate the ring of symmetric polynomials in n variables, i.e. every

symmetric polynomial in n variables can be written as q(en,1(x), . . . , en,n(x)), where q

is some polynomial in n variables.

The elementary symmetric polynomials are hyperbolic with respect to the vector

of all one’s, denoted by 1⃗. We will generally be interested in symmetric hyperbolic

polynomials, which are symmetric polynomials that are hyperbolic with respect to 1⃗.

Definition 2.2.1. A polynomial p is symmetric hyperbolic if it is symmetric and it is

hyperbolic with respect to 1⃗.

Symmetry in this context has been exploited in the past to understand hyperbolicity

cones, notably in [14], as well as in [15, 16]. The main goals of this section will be to

characterize the symmetric hyperbolic polynomials of degree 3, and give connections
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between symmetric hyperbolic polynomials and hyperbolicity preservers for more

general degrees. The content of this section was originally proven in [17].

2.2.1 Hook-shaped polynomials and 0-sum hyperbolicity preservers

Definition 2.2.2. We will let R[t]n,0 denote the subspace of R[t]n consisting of

polynomials where the coefficient of tn−1 is 0. If T : R[t]n,0 → R[t]d,0 is a linear map,

then we say T is a 0-sum hyperbolicity preserver if T sends real rooted polynomials

to real rooted polynomials. We say that T is diagonal if T (tn−i) = γit
d−i whenever

d = 0, 2, . . . ,min{n, d}.

We will say that a symmetric polynomial p ∈ R[x1, . . . , xn] is hook-shaped if it is

of the form

p =
d∑
i=1

aie1(x)d−iei(x),

for some coefficients ai.

Definition 2.2.3. If p is a hook-shaped polynomial, then its associated operator is

a map T : R[t]n,0 → R[t]d,0 defined as follows: if g(t) ∈ Rn[t] is a polynomial which

factors as a(t− r1) . . . (t− rn) for r1, . . . , rn ∈ C, then we let T (g) be a polynomial so

that

T (g) = ap(r⃗ − t⃗1),

where r⃗ denotes a vector whose entries are r1, . . . , rn. We then extend this definition

to all elements of R[t]n,0 (including those of degree less than n) by continuity.

The fact that the T above in fact sends polynomials with real coefficients to

polynomials with real coefficients follows from the fact that if a symmetric polynomial

is evaluated at the roots of a polynomial with real coefficients, then the result is real.

Perhaps more surprisingly, if p is hook-shaped, then T is in fact a diagonal linear map.

We show this in the next theorem.
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Theorem 2.2.4. If p is a hook-shaped polynomial, then its associated operator is a

linear map, and moreover, the map sending p to its associated operator is linear and

invertible. p is symmetric hyperbolic if and only if p(⃗1) ̸= 0 and its associated operator

is a 0-sum hyperbolicity preserver.

Proof. We can perform a direct computation to show that the associated operator

is linear and diagonal. Fix a hook-shaped p of degree d in n variables. It will

be convenient to write p in terms of the elementary symmetric means, defined as

ẽi(x) = ei(x)
(n

i)
. It is clear that because p is hook-shaped, then there exist coefficients

a1, . . . , ad so that

p =
d∑
i=1

aiẽ
d−i
1 ẽi(x).

Let g(t) ∈ R[t]n,0 be monic with roots r1, . . . , rn ∈ C. We may write g(t) = ∏n
i=1(t−

ri) = ∑n
i=0

(
n
k

)
cit

n−i, where c1 = 0. In this case, we have that ci = (−1)iẽi(r1, . . . , rn).

Now, the definition of associated operator gives that

T (g) = p(r⃗ − 1⃗t) =
d∑
i=1

aiẽ1(r⃗ − 1⃗t)d−iẽi(r⃗ − 1⃗t).

It follows from a Taylor expanding ẽi(r⃗−1⃗t) in t that ẽi(r⃗−1⃗t) = ∑i
j=0(−1)i−j

(
i
j

)
ẽj(r⃗)ti−j .

In particular, because ẽ1(r⃗) = 0, we have that ẽ1(r⃗ − t⃗1) = −t.
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We may compute

T (g) =
d∑
i=1

aiẽ1(r⃗ − 1⃗t)d−iẽi(r⃗ − 1⃗t)

=
d∑
i=1

ai
i∑

j=0
(−1)d−j

(
i

j

)
ẽj(r⃗)td−j

=
d∑
j=0

(−1)d−j

 d∑
i=j

(
i

j

)
ai

 ẽj(r⃗)td−j

=
d∑
j=0

 d∑
i=j

(−1)d
(
i

j

)
ai

 cjtd−j

That is, T (g) = ∑d
i=0 γjcjt

d−j , where γj = 1
(n

j)
(−1)d∑d

i=j(−1)d−j
(
i
j

)
ai. This clearly

implies that T (g) is the linear map sending td−j to γjt
d−j, so that T is a diagonal

linear map as desired. Moreover, the γj are the image of the aj under an upper

triangular linear map with nonzero diagonal entries, and so the linear map sending p

to its associated operator is invertible.

We now want to show the equivalence of p being symmetric hyperbolic and T (g)

being a 0-sum hyperbolicity preserver. For this, note that if p is symmetric hyperbolic,

then for any monic g ∈ R[t]n,0 with real roots r1, . . . , rn, we have that the polynomial

T (g) = p(r⃗ − 1⃗t)

is real rooted, implying that T is a 0-sum hyperbolicity preserver.

On the other hand, if T is a 0-sum hyperbolicity preserver, then for any x ∈ Rn,

we have that

T ((t− x1)(t− x2) . . . (t− xn)) = p(x− 1⃗t)

is real rooted, showing that p is hyperbolic.
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2.2.2 Extendable linear maps

This theorem gives a bijective correspondence between symmetric hyperbolic poly-

nomials which are hook-shaped and a certain class of linear hyperbolicity preservers.

One can then apply Theorem 2.1.5 to obtain a recipe for constructing a hook-shaped

symmetric hyperbolic polynomials of degree d from real rooted polynomials of degree

d as follows: We may begin with any real rooted polynomial g ∈ R[t]d with roots of

the same sign, and then find the unique diagonal linear map T̂ : R[t]n → R[t]d so that

T ((t+ 1)n) = g. Theorem 2.1.5 then implies that T̂ is a hyperbolicity preserver, which

then restricts to a 0-sum hyperbolicity preserver, T : R[t]n,0 → R[t]d,0. We may then

find the unique hook-shaped polynomial whose associated operator is T , and this will

be symmetric hyperbolic by Theorem 2.2.4.

Example 2.2.1. We may take as an example the univariate polynomial with only

nonnegative real roots

g(t) = (t− 1)(t− 2)(t− 3)(t− 4) = t4 − 10t3 + 35t2 − 50t+ 24.

By Theorem 2.1.5, the unique diagonal map sending (t− 1)4 = tn − 4t3 + 6t2 − 4t+ 1

to g(t) is a hyperbolicity preserver.

If we let T be this diagonal map, then

T ((t− 1)3(t+ 3)) = t4 − 35t2 + 100t− 72.
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We would therefore want to find a hook-shaped polynomial p so that

p





1

1

1

−3


− t



1

1

1

1




= t4 − 35t2 + 100t− 72.

Letting

p = a1ẽ
4
1 + a2ẽ

2
1ẽ2 + a3ẽ1ẽ3 + a4ẽ4,

we may solve for a1, a2, a3, a4 and find that

p = −6ẽ4
1 + 29ẽ2

1ẽ2 − 46ẽ1ẽ3 + 24ẽ4,

Our theorem then implies that p is symmetric hyperbolic.

A natural question is whether or not this recipe in fact yields all hook-shaped

polynomials which are symmetric hyperbolic. The only step in this construction which

is not obviously bijective is the step of restricting a hyperbolicity preserver to R[t]n,0.

We will make the definition that a map T : R[t]n,0 → R[t]d,0 is extendable if there exists

a hyperbolicity preserver T̂ : R[t]n → R[t]d that equals T on the subspace R[t]n,0.

We can give an equivalent condition for T to be extendable in terms of the value

of T ((t + n − 1)(t − 1)n−1). For this, we need to consider a map δn : R[t]n → R[t]n,

which is defined so that it is equal to the unique diagonal map sending δn((t− 1)n) =

(t− n+ 1)(t− 1)n−1.

Definition 2.2.5. Let δn : R[t]n → R[t]n,0 be the diagonal linear map defined by

δn(tn−k) = −(k − 1)tn−k

for all k ∈ [n].
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For any diagonal map T : R[t]n → R[t]d, T (δn(g)) = δd(T (g)), since the coefficient

of δn(tn−k) does not depend on n. For this reason, we will abbreviate δn as δ where

there is no ambiguity in its domain.

Lemma 2.2.6. A linear map T : R[t]n,0 → R[t]d,0 is extendable if and only if there

exists some g ∈ R[t]n with real roots of the same sign, so that δ(g) = T ((t−n+ 1)(t−

1)n−1).

Proof. Suppose that T ((t + n − 1)(t − 1)n−1) = δ(g) for some g with real roots of

the same sign. We claim that the unique diagonal map T̂ = R[t]n → R[t]d satisfying

T̂ ((t − 1)n) = g extends T and is a hyperbolicity preserver. The fact that T̂ is a

hyperbolicity preserver follows from Theorem 2.1.5. The fact that T̂ extends T follows

because

T̂ ((t+ n− 1)(t− 1)n−1) = T̂ (δ((t− 1)n))

= δ(T̂ ((t− 1)n))

= δ(g)

= T ((t+ n− 1)(t− 1)n−1).

Here, we make the observation that a diagonal map T : R[t]n,0 → R[t]d,0 is uniquely

determined by the value of T ((t+ n− 1)(t− 1)n−1).

On the other hand, if T is extendable by a map T̂ , then it follows from the same

sequence of equalities that δ(T̂ ((t − 1)n)) = T ((t + n − 1)(t − 1)n−1), so the result

follows from setting g = T̂ ((t− 1)n).

Next, we will show that all 0-sum hyperbolicity preservers T : R[t]n,0 → R[t]3,0 are

extendable.

Theorem 2.2.7. For any n ∈ N, every diagonal 0-sum hyperbolicity preserver T :

R[t]n,0 → R[t]3,0 is extendable. Moreover, a diagonal linear map T : R[t]n,0 → R[t]3,0
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is extendable if and only if

T ((t+ n− 1)(t− 1)n−1)

is real rooted.

Proof. Note (t+ n− 1)(t− 1)n−1 ∈ R[t]n,0, so if T is a 0-sum hyperbolicity preserver,

then T ((t+ n− 1)(t− 1)n−1) is real rooted.

Now, suppose that q = T ((t+ n− 1)(t− 1)n−1) is real rooted. By Lemma 2.2.6,

to show that T is extendable, it suffices to show that q = δ(g), for some g with real

roots of the same sign.

We have therefore reduced the problem to showing that for any real rooted

polynomial in R[t]3,0 is the image under δ of some polynomial with roots of the same

sign.

To show this, we will use the facts that δ((t − 1
2)3) = (t − 1

2)2(t + 1), δ(t3) = t3,

and δ((t − 1)2t) = (t − 1)(t + 1)t. We will define H3,+ ⊆ R[t] to be the set of

hyperbolic polynomials of degree at most 3 with nonnegative real roots of the same

sign. Also note that the set of univariate polynomials with nonnegative real roots is

path connected (as it is the image of R3
+ under a polynomial map), and in particular,

there is a path τ : [0, 1] → H3,+ so that τ(0) = (t − 1
2)3 and τ(1) = (t − 1)(t + 1)t.

Also note that without loss of generality, we may assume that τ does not intersect

{at3 − bt2 : a, b ∈ R} ⊆ H3,+, since this is a codimension 2 subset.

Next, let H3,0 denote the set of real rooted, degree 3 polynomials in R[t]3,0. We

will need to define a continuous function E : H3,0 \ {at3 : a ∈ R} → [0, 1] as follows.

If g ∈ H3,0 \ {at3 : a ∈ R}, with roots r1 ≥ r2 ≥ r3, then we let

E(g) = min{
∣∣∣∣r1

r3

∣∣∣∣ , ∣∣∣∣r3

r1

∣∣∣∣}.
Note that E(g) is well defined for any g ∈ H3,0 \ {at3 : a ∈ R} since any such
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polynomial must have a nonzero root, and since the sum r1 + r2 + r3 = 0, this implies

that it must have a positive and negative root. We also clearly have that E(g) ∈ [0, 1],

and it is continuous because the roots of a polynomial are continuous functions of the

polynomial.

Note that if g, q ∈ H3,0, then E(g) = E(q) if and only if there exist a, b ∈ R so

that ag(bt) = q(t) for all t ∈ R.

Suppose now that there is some g ∈ H3,0 so that g(t) is not in the image of δ. We

see that because g(t) is not in the image of δ, neither is ag(bt) for any a, b ̸= 0, the

image of δ is invariant under these operations. We further see that g(t) cannot be t3

since that is in the image of δ.

Finally, we have reached a contradiction. As E(τ(0)) = 1 and E(τ(1)) = 0, so by

the intermediate value theorem, there is some t so that E(τ(t)) = E(g), contradicting

the fact that g is not in the image of δ.

Using this, we can obtain a characterization of cubic symmetric hyperbolic polyno-

mials.

Corollary 2.2.8. Let b be a coordinate vector, and let p be a cubic symmetric

polynomial. Then, p is symmetric hyperbolic if and only if p(⃗1) ̸= 0 and p(b− t⃗1) has

real roots.

Proof. For this, note that p is symmetric hyperbolic if and only if its associated

operator is a hyperbolicity preserver. In turn, if T is its associated operator, then

T preserves hyperbolicity if and only if T ((t + n − 1)(t − 1)n−1) is real rooted. In
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conclusion, p is symmetric hyperbolic if and only if

T ((t+ n− 1)(t− 1)n−1) = p





−n+ 1

1

. . .

1


− t⃗1



= −n3p





1

0

. . .

0


− (t− 1)

n
1⃗



has real roots, which is clearly equivalent to p(b− 1⃗t) having real roots.

The paper [17] generalizes some parts of this argument and shows using a more

complicated topological argument that in fact, all diagonal 0-sum hyperbolicity pre-

servers T : R[t]n,0 → R[t]4,0 are extendable. This also leads to a characterization of

the degree 4 hook-shaped symmetric hyperbolic polynomials, which we will not prove

here.

Theorem 2.2.9. For any n ∈ N, every diagonal 0-sum hyperbolicity preserver T :

R[t]n,0 → R[t]4,0 is extendable. Moreover, a diagonal linear map T : R[t]n,0 → R[t]4,0

is extendable if and only if

T ((t+ n− 1)(t− 1)n−1)

has real roots, of which 3 are of the same sign.

However, there is an example of a diagonal 0-sum hyperbolicity preserver T :

R[t]n,0 → R[t]5,0 which is not extendable, which we discuss next.
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Theorem 2.2.10. Let

p = 4500e5 − 220e1e4 + 7e2
1e3 ∈ R[x1, . . . , x5]5

Then, p is symmetric hyperbolic, but p’s associated operator is not extendable.

Proof. We will note that the associated operator of p satisfies

T ((t+ 4)(t− 1)2) = −750(t+ 6)(t− 1)2(t− 2)2.

To show that p is symmetric hyperbolic, we will use Theorem 2.1.3.

To see that D1⃗p is symmetric hyperbolic, we note that the associated operator of

D1⃗p sends a univariate polynomial g to d
dt
T (g), so it is easy to check that D1⃗p satisfies

the conditions of Theorem 2.2.9.

We next check that ∆1⃗1⃗p is nonnegative. In fact, using computational methods,

it is possible to show that this polynomial is in fact a sum of squares, immediately

implying nonnegativity.

Finally, we note that px(t) and d
dt
px(t) are square free when x =



1

1

0

0

0


, so that we

may apply Theorem 2.1.3.

On the other hand, to see that T is not extendable, we use the following fact from

[17]:

Theorem 2.2.11. Let g ∈ R[t] be univariate. If δ(g) has a root of multiplicity k > 1

at r > 0, then g must have a root of multiplicity k + 1 at r.

Therefore, if −750(t+ 6)(t− 1)2(t− 2)2 = δ(g) for some g with real roots, then g

must vanish at 1 and 2 with multiplicity 3, but this is a contradiction as g is a degree
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5 polynomial.

Remark 3. This polynomial p has some rather remarkable properties, for example,

it is not SOS-hyperbolic, as can be seen by computing ∆1⃗,up, where u = (6, 1, 1, 1, 1).

Moreover, it can be shown that if p is written in the ẽi basis, then in fact, the

hyperbolicity of p is independent of the number of variables.

2.3 Linear principal minor polynomials

A family of polynomials which are closely related to the elementary symmetric

polynomials are what we will refer to as the characteristic coefficients. These are

sometimes also called the k-determinants. For a symmetric matrix X, these are defined

by

cn,k(X) =
∑
S⊆[n]
|S|=k

det(X|S), (2.3.1)

where the sum runs over all principal submatrices of X of size k.

Such characteristic coefficients are directly related to the elementary symmetric

polynomials, in the sense that

cn,k(X) = en,k(λ1(X), . . . , λn(X)),

where the λi(X) are the eigenvalues of X.

As a consequence of the fact that en,k is hyperbolic with respect to 1⃗, cn,k is

hyperbolic with respect to I, the identity matrix. In fact, cn,k is hyperbolic with

respect to all matrices in the PSD cone. Motivated by this, we make the following

definition:

Definition 2.3.1. A polynomial p ∈ R[Xij : i ≤ j ≤ n] is PSD stable if it is hyperbolic

with respect to I and ΛI(p) contains the PSD cone.
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Amongst the set of stable polynomials are those which are multiaffine, meaning

that the polynomial is of degree at most 1 in each variable. Such multiaffine stable

polynomials arise as generating functions in combinatorics. A homogeneous multiaffine

stable polynomial of degree d can be written in the form

p(x) =
∑
S⊆[n]
|S|=d

aS
∏
i∈S

xi.

Comparing the representation of the elementary symmetric polynomial as a sum of

monomials to the representation of cn,k as a sum of principal minors, we are motivated

to consider polynomials which are generally of the form

P (x) =
∑
S⊆[n]
|S|=d

aS det(X|S).

We will refer to these as linear principal minor polynomials (LPM for short).

Formally, there is a linear map Φ from the linear subspace of R[x1, . . . , xn] spanned

by square free monomials to the linear subspace of R[Xi,j : i ≤ j ≤ n] spanned by

principal minors of X sending ∏i∈S xi to det(X|S). Throughout, we will use lower

case letters to denote multiaffine polynomials and upper case letters to denote the

corresponding LPM polynomial, so that for example, if p is a multiaffine polynomial,

then P is Φ(p). Note that Φ has an inverse map, since p = P (Diag(x1, . . . , xn)).

Given the example of the characteristic coefficients, it is interesting to ask when

LPM polynomials are PSD stable. We may characterize these polynomials naturally.

Theorem 2.3.2. An LPM polynomial P is PSD stable if and only if its corresponding

multiaffine polynomial p is stable.

This theorem was first proven in [20]. One direction of this theorem is clear;

if P is PSD stable, then p = P (Diag(x1, . . . , xn)) is stable because p(x + tv) =

P (Diag(x) + tDiag(v)), and the right side is real rooted for all x and v in the positive
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orthant. Thus, we are mostly interested in showing that if p is stable, then P is PSD

stable.

Before we go on, we need the following fact about hyperbolicity cones that can be

found in [3].

Lemma 2.3.3. Let p ∈ R[x1, . . . , xn] be a homogeneous polynomial and K ⊂ Rn a

cone. The following are equivalent:

1. p is hyperbolic with respect to all a ∈ K, and

2. p(v + ia) ̸= 0 for all v ∈ Rn and a ∈ K.

We now make an observation

Lemma 2.3.4. Let P ∈ R[Xij : i ≤ j ≤ n] be a homogeneous polynomial. Then P is

PSD-stable if and only if the following two conditions hold:

1. P (A) ̸= 0 for all positive definite matrices A;

2. P (Diag(x1, . . . , xn) + M) ∈ R[x1, . . . , xn] is stable for every real symmetric

matrix M .

Proof. First assume that P is PSD-stable and let A be a positive definite matrix.

Because A is in the interior of ΛI(P ), we have that P (A) ̸= 0. Also, if for some M ,

P (Diag(x1, . . . , xn) +M) is not stable, then there is also some ζ ∈ Cn so that for each

i, the imaginary part of ζi is positive, and

P (Diag(ζ1, . . . , ζn) +M) = 0.

However, consider the univariate polynomial

P ((Re(Diag(ζ1, . . . , ζn)) +M) + tIm (Diag(ζ1, . . . , ζn))).
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This clearly has a root when t = i, so that P is not hyperbolic with respect to

Im (Diag(ζ1, . . . , ζn))). This is a contradiction, as Im (Diag(ζ1, . . . , ζn))) is positive

definite, and therefore in the hyperbolicity cone of P .

For the other direction we first observe that condition (2) implies that P is

hyperbolic with respect to the identity matrix. We then see that because P (A) ̸= 0

for A ≻ 0, the connected component of Rn×n
sym \ V(P ) containing I must contain all

positive definite matrices, so that ΛI(P ) contains the positive definite cone.

Proof of Theorem 2.3.2. Let p ∈ R[x] be multiaffine, homogeneous and stable. Then

by [18, Thm. 6.1] all nonzero coefficients of p have the same sign. Without loss of

generality assume that all are positive. Then P = Φ(p) is clearly positive on positive

definite matrices since the minors of a positive definite matrix are positive. Thus by

Lemma 2.3.4, it remains to show that

P (Diag(x1, . . . , xn) +M) =
(
p∗
(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

))
det(Diag(x1, . . . , xn) +M)

is stable for every real symmetric matrix M . The polynomial det(Diag(x1, . . . , xn)+M)

is stable as well as p∗ by [18, Prop. 4.2]. Thus the polynomial P (Diag(x1, . . . , xn)+M)

is also stable by [19, Thm. 1.3].

The consequences of this result are explored in greater detail in [20]. In particular,

various analogues of the Hadamard-Fischer theorem are given relating the values of P

and p within their hyperbolicity cones.

We will highlight one consequence of this result here: a particular cubic polynomial

p in 6 variables which is hyperbolic with respect to some vector v, but with the

property that ∆uvp is not a sum of squares for some u, v ∈ Λv(p).

Remark 4. In [12] Saunderson constructs a hyperbolic cubic in 43 variables whose

Bézout matrix is not a matrix sum of squares, and noted that at the time, it was not

known whether or not there existed such cubic polynomials with fewer variables. The
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polynomial we construct below in particular has this property, as ∆uvp is one of the

diagonal entries of the Bézout matrix of p. For all higher degrees, it is known precisely

for which n all hyperbolic polynomials of that degree with n variables have a Bézout

matrix that is not a matrix sum of squares.

Consider the complete graph K4 on 4 vertices. We define the spanning tree

polynomial of K4 as the element of R[xe : e ∈ E(K4)] given by

tK4(x) =
∑
τ

∏
e∈τ

xe ,

where τ ⊂ E(K4) ranges over all edge sets of spanning trees of K4. The polynomial

tK4 is multiaffine, homogeneous and stable [18, Thm. 1.1]. Let T be its corresponding

LPM polynomial. Finally, let p be the polynomial obtained from T by evaluating T

at the matrix of indeterminants

A =



12 13 14 23 24 34

x1 0 0 0 0 0

0 x2 a b c 0

0 a x2 c b 0

0 b c x2 a 0

0 c b a x2 0

0 0 0 0 0 x3



.

Thus p is hyperbolic with respect to every positive definite matrix that can be obtained

by specializing entries of A to some real numbers. In particular, the polynomial

W = ∂p

∂x1
· ∂p
∂x3
− p · ∂2p

∂x1∂x3

is nonnegative. We will show that it is not a sum of squares.
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Theorem 2.3.5. The polynomial W is not a sum of squares.

Proof. Explicitly,

1
4W = a2b2 + a2c2 + b2c2 + c4 − 8abcx2 + 2a2x2

2 + 2b2x2
2

We first note that if W were a sum of squares, then it is the sum of squares of quadratic

forms. Indeed, by examining the Newton polytope of W , we see that if W were a sum

of squares, then it would necessarily be a sum of squares of polynomials in the linear

subspace

span{ab, ac, ax2, bc, bx2, c
2}.

The idea of considering the Newton polytope in finding such sum-of-squares decompo-

sitions was first discussed in [21].

W can be written as a sum of squares from elements in this subspace if and only

if there is a PSD matrix A so that

W = v⊺Av, (2.3.2)

where

v =



ab

ac

ax2

bc

bx2

c2



.

Suppose that such an A existed. Expanding out Equation (2.3.2) in terms of the
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entries of A, we obtain that A must be of the following form:



1 Aab,ac Aab,ax2 Aab,bc Aab,bx2 Aab,c2

Aab,ac 1 Aac,ax2 Aac,bc Aac,bx2 Aac,c2

Aab,ax2 Aac,ax2 2 Aax2,bc Aax2,bx2 Aax2,c2

Aab,bc Aac,bc Aax2,bc 1 Abc,bx2 Abc,c2

Aab,bx2 Aac,bx2 Aax2,bx2 Abc,bx2 2 Abx2,c2

Aab,c2 Aac,c2 Aax2,c2 Abc,c2 Abx2,c2 1



,

and also satisfy the property that Aax2,bc + Aac,bx2 = −4.

Here, we index the entries of A by the pair of monomials corresponding to that

entry of A.

Consider now the matrix

B =



3 0 0 0 0 0

0 12 0 0 9 0

0 0 8 9 0 0

0 0 9 12 0 0

0 9 0 0 8 0

0 0 0 0 0 3



This matrix is positive definite, and also satisfies the property that for any A of the

above form, satisfying Aax2,bc + Aac,bx2 = −4,

Tr(AB) = −10.

This is negative, contradicting the fact that A was positive semidefinite. This implies

that W is not a sum-of-squares.

Remark 5. The matrix B that certified that W was not a sum-of-squares can be found-
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ing using general semidefinite programming techniques. We used the SumOfSquares.jl

Julia package [22, 23] for this problem.

Remark 6. In the terminology of [12] this shows in particular that h is neither

SOS-hyperbolic nor weakly SOS-hyperbolic.
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CHAPTER 3

SPARSITY IN SEMIDEFINITE PROGRAMMING

Many problems in optimization have a natural ‘sparse’ structure, meaning that either

many of the entries of the input or the expected output are zero. In combinatorics for

example, many inputs are graphs which have much smaller than the maximum number

of edges possible for their number of vertices. Optimization problems associated

to these graphs can inherit this sparse structure, as in the case of the Goemans-

Williamson relaxation of the MAX-CUT problem which we discuss in more detail

below. We may want to solve such sparse problems more quickly or with less memory

than dense instances of the same problems.

A different situation where such sparse structure appears naturally is in sparse

linear regression, known in the literature as the subset selection problem. This problem

has as input a matrix A ∈ Rm×n, a vector b ∈ Rm, and a sparsity parameter k ∈ N,

and asks to find

min{∥Ax− b∥2
2 : ∥x∥0 ≤ k}. (3.0.1)

Here, ∥x∥0 is the number of nonzero entries in x. This problem is of fundamental

interest in data science and optimization, but is very difficult to solve with rigorous

guarantees. This problem is known to be NP-hard even to approximate [24, 25] in

general, so typically guarantees are more often sought after in special settings. Other

problems involve finding solutions to optimization problems which have few nonzero

entries.

To distinguish between the two types of sparse structure above, we may refer to

these two situations as having ‘input sparsity’ and ‘output sparsity’ respectively. The

goal of this section is to discuss an interesting structural framework that captures

38



aspects of these questions in the context of semidefinite programming. Section 3.1

defines various convex cones which are related to these questions of sparse semidefinite

programming, and motivates how an understanding of these cones can lead to practical

implications for problems possessing both input and output sparsity. Section 3.2 derives

quantitative bounds on approximations to certain semidefinite programs with input

sparsity. Finally, Section 3.3 connects these sparse semidefinite programming questions

to hyperbolicity cones and problems with output sparsity.

3.1 Preliminary notions

Fix some collection of subsets ∆ ⊆ [n], and consider the set of ∆-sparse vectors in Rn,

X (∆) = {x ∈ Rn : supp(x) ∈ ∆}.

Here supp(x) = {i ∈ [n] : xi ̸= 0}. It is natural to assume that ∆ has the property

that if S ∈ ∆, then for any T ⊆ S, T ∈ ∆, as this implies that X (∆) is closed. Indeed,

for a simplicial complex ∆, the set X (∆) is a well known type of algebraic variety,

known as a Stanley-Reisner variety. The connections between the algebraic structure

of such Stanley-Reisner varieties and the topological properties of ∆ are well known

and are discussed, for example in [26, Chapter 1].

Given a simplicial complex ∆, we may define the convex cone

M(∆) = conv{xx⊺ ∈ Rn×n
sym : x ∈ X (∆)}.

Let G(∆) = {S ∈ ∆ : |S| ≤ 2}, which we may regard as a graph where the one

element sets are vertices and the two element sets are edges. If we let G = G(∆), then

M(∆) is a full dimensional cone inside of

RG = {X ∈ Rn×n
sym : Xi,j = 0 if {i, j} ̸∈ G}.
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The case in which ∆ =
(

[n]
k

)
, the set of all k-element subsets of [n], is especially well

studied. In this case, M(∆) is known as the factor-width k cone, which we denote by

Fn,k.

We can express sparse quadratically constrained quadratic programs in terms of

the cone M(∆), as in the next theorem.

Theorem 3.1.1. The following two optimization problems have the same optimal

values, assuming A1 is PSD.

min x⊺A0x

s.t. x⊺A1x = 1

supp(x) ∈ ∆

(3.1.1)

min Tr(A0X)

s.t. Tr(A1X) = 1

X ∈M(∆)

(3.1.2)

One optimization problem captured in this framework is the sparse PCA problem,

defined for a given symmetric matrix A as

min x⊺Ax

s.t. x⊺x = 1

∥x∥0 ≤ k.

(3.1.3)

The sparse linear regression problem defined above can also be captured in this

framework for a given A and b as

min Tr(A⊺bb⊺AX)

s.t. Tr(A⊺AX) = 1

X ∈M(∆).

(3.1.4)
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3.1.1 Nonnegative quadratic forms and sparse semidefinite programming

There is a dual vector space to RG, RG∗ which we may think of as being as being

‘partial matrices’, i.e. matrices where the entries which correspond to nonedges of

G(∆) have been forgotten. To be more specific, a given X ∈ RG∗, assigns a value Xij

for every {i, j} ∈ ∆, but does not assign a value to other entries. Equivalently, we

can think of an element of RG(∆)∗ as being a quadratic form on X (∆), in the sense

that if x ∈ X (∆), then we may define x⊺Xx = ∑
i,j∈G(∆) Xijxixj . We may think of an

element S ∈ ∆ as indexing a submatrix of X where all of the entries are specified,

which we denote X|S.



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


→



1 0 ? 0

0 1 0 ?

? 0 1 0

0 ? 0 1


Figure 3.1: An example of the projection of a matrix onto the edges of a cycle graph.
This image was originally shown in [27].

Example 3.1.1.

There is a natural dual cone toM(∆), which is also a full dimensional cone inside

RG(∆)∗. We will denote by P(∆) this dual cone, and we may think of elements of

P(∆) as being nonnegative quadratic forms on X (∆). Equivalently, a partial matrix

X is in P(∆) if and only if for each S ∈ ∆, X|S ⪰ 0.

Inside of P(∆) is another natural cone, the cone of PSD-completable matrices,

which we denote by Σ(G(∆)). That is,

Σ(G) = {X ∈ RG : ∃X̂ ⪰ 0 where ∀i, j ∈ G, Xi,j = X̂i,j}.
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These correspond to quadratic forms on X(∆) which are sums of squares of linear

forms on X(∆).

It is natural to ask when Σ(G(∆)) = P(∆). This question was answered in different

terms in [28], when the complexes are restricted to being clique complexes. The clique

complex of a graph G, χ(G), is the set of all subsets of the vertices of G which induce

a clique in G. 1 For clique complexes, the results in [28] showed that if G is a graph,

then Σ(G) = P(χ(G)) if and only if G is chordal in the sense that G contains no

induced cycles of length greater than 3. In [29], it was shown that this is a consequence

of a more general fact about the differences between sums of squares and nonnegative

quadratic forms on algebraic varieties using a result of [30]. As a consequence of

this more general fact, it can easily be shown that in fact for any simplicial complex,

Σ(G(∆)) = P(∆) if and only if ∆ is the clique complex of a graph.

The fact that Σ(G(∆)) = P(∆) when ∆ is the clique complex of a chordal graph

is in fact extensively used in the study of semidefinite programs with sparse inputs.

Given a semidefinite program

min Tr(A⊺
0X)

s.t. Tr(A⊺
iX) = bi for i = 1, . . . ,m

X ⪰ 0,

(3.1.5)

we may define the joint sparsity of this semidefinite program to be the smallest

graph on n vertices so that Ai ∈ RG for each i = 0, . . . ,m. In this case, rather than

optimizing over the set of all positive semidefinite matrices, we can instead optimize

over Σ(G). When G is chordal, the fact that Σ(G) = P(χ(G)) implies that indeed

we can equivalently optimize over P(χ(G)). To be concrete about the advantages

of this replacement, we note that a partial matrix X is in P(∆) if and only if for
1In category theoretic terms, this is a right adjoint to the functor sending a simplicial complex to

its underlying graph.
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every maximal element S ∈ ∆, the fully specified submatrix X|S is PSD. When G is

a chordal graph, the number of maximal cliques of G is at most linear in the number

of vertices, and so it is possible to check if a partial matrix is in P(χ(G)) in time

O(nω(G)3), where ω(G) denotes the size of the largest clique of G. In cases in which

ω(G) is much smaller than n, this can make algorithms for semidefinite programming

much more efficient.

An example of a type of semidefinite program with joint sparsity are the Goemans-

Williamson relaxations for the MAX-CUT problem, first given in [31]. The MAX-CUT

problem is an optimization problem which takes in as input a graph G, and asks

for a set of vertices of G, S, so that the number of edges with one vertex in S and

the other in Sc is as large as possible. This problem is NP-hard, but by making S a

uniformly random subset, it is easy to obtain a 1
2 -factor approximation. Goemans and

Williamson in their breakthrough work show that the following semidefinite program

achieves an approximation factor of at least 0.878.

max
∑

{i,j}∈G

1−Xij

2

s.t. Xii = 1 for i = 1, . . . , n

X ⪰ 0.

(3.1.6)

It is clear that in this case, the joint sparsity of this problem is G. We might therefore

be interested in getting faster algorithms in cases where G is sparse than when G is

dense. Indeed, various authors [32, 33] show that it is practically useful to take G to

be a somewhat larger chordal graph and to instead optimize over P(χ(G)).

We will describe how we can extend this algorithmic value beyond the chordal

case using quantitative analysis of the difference between P(∆) and Σ(G(∆)).
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3.2 Approximate positive semidefinite completions

The results in this section were first described in [34].

It is desirable to extend the theory that allows us to work with chordal graphs to

more general settings. Some noteworthy work in this direction are [35, 36], which show

that if ∆ is the clique complex of a series parallel graph G, a partial matrix X ∈ P(∆)

is in Σ(G) if and only if for every cycle C contained in G, the partial submatrix X|C

is in Σ(C).

In the cases in which Σ(G(∆)) ̸= P(∆), it is natural to ask how different are

these two cones? From an optimization perspective, there may be cases of inequality

where it still may be computationally preferable to optimize over P(∆) instead of

Σ(G(∆)), for example the number of elements of ∆ and the sizes of the elements of

∆ are small relative to n. Therefore, we might ask how much we stand to lose by

replacing Σ(G(∆)) by P(∆) in an optimization problem.

To measure this gap, we first say that for a given element X ∈ RG, the minimum

eigenvalue of X is λmin(X) = −min{ε ∈ R : X + εI ∈ Σ(G)}, where I is the image

of the identity matrix inside of RG. This definition coincides with the minimum

eigenvalue of a matrix X in the cases where G is the complete graph, and clearly,

λmin(X) ≥ 0 if and only if X ∈ Σ(G). We then define the gap of a simplicial complex

as follows: let P(∆) = {X ∈ P(∆) : Tr(X) = 1}.

ε(∆) = −min{λmin(X) : ∀X ∈ P(∆)}.

We have that ε(∆) ≥ 0 with equality if and only if ∆ is the clique complex of a chordal

graph.

We can also define this quantity in terms of X ∈M(∆):
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Theorem 3.2.1. For any simplicial complex ∆,

ε(∆) = max
X∈RG(∆)
X⪰0

Tr(X)=1

max{ϵ : X + ϵI ∈M(∆)}.

Proof. Suppose there is some X ∈ RG(∆) such that X ⪰ 0 and Tr(X) = 1, and so

that X + ϵ(∆)I ̸∈ M(∆). Then by convex duality, there must be some Y so that

Y ∈ P(∆) so that ⟨Y,X + ϵ(∆)I⟩ < 0, and we may take Y to have trace 1. We then

have that

⟨Y,X + ϵ(∆)I⟩ = ⟨Y,X⟩+ ϵ(∆)Tr(Y ) = ⟨Y + ϵ(∆)I,X⟩ < 0.

However, this is a contradiction, as this implies that Y + ϵ(∆)I cannot have a PSD

completion, which is a contradiction of the definition of ϵ(∆).

Applying this sequence of equations in reverse gives the other direction.

If ε(∆) is small, then we can optimize over P(∆) as a substitute for optimizing over

Σ(∆) without too much difficulty. To formalize this, we will say that a semidefinite

program with a maximization objective is of Goemans-Williamson type if it has joint

sparsity G, the identity matrix is feasible with nonnegative objective value, and if every

feasible point has trace n, so that for example, the Goemans-Williamson relaxation of

MAX-CUT is of Goemans-Williamson type.

Theorem 3.2.2. Let α denote the value of a Goemans-Williamson type SDP, and let

α′ be the value of the SDP obtained by replacing Σ(G) by P(∆), for some ∆ where

G(∆) contains G. Then
1

1 + ε(∆)nα
′ ≤ α ≤ α′.
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Proof. To be explicit, the Goemans-Williamson type SDP is of the form

α =

max Tr(A0X)

s.t. Tr(AiX) = bi for i = 1, . . . ,m

X ⪰ 0.

(3.2.1)

where each Ai ∈ RG. We can equivalently write this as

α =

max Tr(A0X)

s.t. Tr(AiX) = bi for i = 1, . . . ,m

X ∈ Σ(G).

(3.2.2)

If G(∆) contains G, then we may relax this to

α′ =

max Tr(A0X)

s.t. Tr(AiX) = bi for i = 1, . . . ,m

X ∈ P(∆).

(3.2.3)

Because P(∆) ⊇ Σ(G), we have that α′ ≥ α. On the other hand, if we let X∗

maximize Equation (3.2.3), then by definition of ε(∆), we have that

X∗ + nε(∆)I ∈ Σ(G).

Because I and X∗ satisfy the linear constraints, so does 1
1+nε(∆)(X

∗ + nε(∆)I), so

that 1
1+nε(∆)(X

∗ + nε(∆)I) is feasible for the original problem. Therefore, because we

have found a feasible point, we must have that

α ≥ Tr
(

A0

1 + nε(∆)(X∗ + nε(∆)I)
)
≥ 1

1 + nε(∆)Tr(A0X
∗) = 1

1 + nε(∆)α
′.
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Here, we have used the fact that the objective value of I is nonnegative.

Here, we will show some results about this quantity for specific complexes, specifi-

cally cycles and the clique complexes of series parallel graphs. More results about this

quantity can be found in [27, 34].

3.2.1 Gaps of cycles

We begin by describing how to compute ε(Cn), where Cn is a cycle with n vertices,

i.e. as a simplicial complex,

Cn = {{i} : i ∈ [n]} ∪ {{i, (i+ 1 mod n)} : i ∈ [n]}.

Theorem 3.2.3. For n ≥ 3, ε(Cn) = 1
n

(
1

cos( π
n

) − 1
)

.

We will require some lemmas before proving this theorem.

Firstly, we say that a given X ∈ P(∆) is locally rank 1 if for every S ∈ ∆, X|S is

rank at most 1. We also say that a complex ∆ is locally rank 1 if every extreme ray

of P(∆) is locally rank 1.

Lemma 3.2.4. Every graph (in the sense of being a simplicial complex where every

element has size at most 2) is locally rank 1.

Proof. Let G be such a graph, and let X be an extreme ray of P(G). Suppose that

for some S = {i, j} ∈ G, X|S has rank greater than 1. Because every element of Cn

has size at most 2, we have that X|S would then have rank 2 and be positive definite.

We claim that if D ∈ RG has the property that Dij = Dji = δ > 0 sufficiently

small, and Dkℓ = 0 for all other {k, ℓ} ∈ G, then

X ±D ∈ P(G).
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To see this, note that if S ∈ G but S ̸= {i, j}, then (X ± D)|S = X|S. So we can

conclude that for every S ∈ ∆, (X ± D)|S ⪰ 0 as long as δ is small enough that

(X ±D)|{i,j} ⪰ 0, and there exist positive such δ because X|{i,j} is positive definite.

This implies that X is not an extreme ray, as desired, since X = 1
2(X + D) +

1
2(X −D), and X cannot be a multiple of D, since D,−D ̸∈ P(G).

It is not hard to see that clique complexes of chordal graphs are also locally rank 1.

In [37], many other complexes besides these examples are shown to have this property,

which leads naturally to other calculations of ε(∆) for various other complexes ∆.

Lemma 3.2.5. The minimum of λmin on P(Cn) is obtained at some X which is

locally rank 1 and with exactly one negative entry.

Proof. Note that the function λmin is concave, and therefore maximized at an extreme

point of P(Cn), which by our previous lemma is locally rank 1. Now, let X ′ be such

a locally rank 1 maximizer. We note that if D is a diagonal matrix where all of the

diagonal entries are either 1 or −1, then D is unitary, and hence, conjugating a matrix

by D preserves its eigenvalues. Given A, an extreme ray in P(Cn), we can conjugate

it by an appropriate diagonal matrix D so that A has a minimal number of negative

entries. There are two cases: either A can be conjugated so that all of its entries are

nonnegative, or so that exactly one pair of entries is negative. If A can be conjugated

so that all of its entries are nonnegative, then in fact, it is the projection of a rank 1

PSD matrix, and so, it is PSD completable. The only important case then is the case

when A has exactly one pair of negative entries, and we will call this the normal form

of an extreme ray A.

Lemma 3.2.6. If X ∈ P(Cn), then X has a rank 2 PSD completion if and only if
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there are some ai ∈ {1,−1} so that

n∑
i=1

ai arccos
(

Xii+1√
Xii

√
Xi+1i+1

)
= 2kπ, (*)

for some integer k.

Proof. We make a sequence of reductions to prove the result.

In terms of vector arrangements, X is completable to a PSD rank 2 matrix if and

only if there are vectors v1, . . . , vn ∈ R2 so that for each i

∥vi∥2 = Xii,

⟨vi, vi+1⟩ = Xii+1.

For the sake of notation, let X̄i = Xii+1√
Xii

√
Xi+1i+1

. If we renormalize these equations

to make the vi lie on the unit circle, we can equivalently ask for vi ∈ R2 so that

∥vi∥2 = 1,

⟨vi, vi+1⟩ = X̄i

In this case, we will think of ai arccos(X̄i) as the angle between vi and vi+1; the

equation is equivalent to the condition that the sum of the angles between the vectors

on the circle is a multiple of 2π.

Formally, for each vi ∈ R2 so that ⟨vi, vi⟩ = 1, we can express vi in polar coordinates.

This implies that there are some θi so that

vi = (cos(θi), sin(θi)).
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In this case, these equations reduce to the equations

cos(θi+1 − θi) = X̄i.

To see the necessity of the equation (∗), note that if there exist θi satisfying the

previous equation, then using some basic facts about the cos function, there exist

some ai ∈ {−1, 1} and ℓi ∈ Z so that

θi+1 − θi = ai arccos(X̄i) + 2πℓi.

Letting k = −∑n
i=1 ℓi, this implies that

n∑
i=1

(θi+1 − θi) =
n∑
i=1

(ai arccos(X̄i) + 2πℓi)

=
n∑
i=1

ai arccos
(

Xii+1√
Xii

√
Xi+1i+1

)
− 2kπ

= 0.

which clearly implies equation (∗).

To see the sufficiency of equation (∗), suppose that there exist ai and some k so

that equation (∗) holds. Then, set θ1 = 0, and for each 1 ≤ i < n, set

θi+1 = θi + ai arccos(X̄i).

Then, clearly, for i < n, we have the desired result that

cos(θi+1 − θi) = cos(ai arccos(X̄i)) = X̄i.
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and for i = n, we see that

θn =
n−1∑
i=1

ai arccos(X̄i)

=
n−1∑
i=1

ai arccos
(

Xii+1√
Xii

√
Xi+1i+1

)

= 2kπ − an arccos
(

X1n√
X11
√
Xnn

)
.

Therefore,

cos(θ1 − θn) = cos
(

2kπ − an arccos
(

X1n√
X11
√
Xnn

))

= X̄n,

as we desired.

The previous lemma has particular application to a partial matrix in normal form.

Lemma 3.2.7. If X ∈ P(Cn), and X is locally rank 1 with exactly one negative entry

(say Xn 1 < 0), then X + εIn has a rank 2 PSD completion if

n∑
i=1

arccos
( √

XiiXi+1i+1√
Xii + ε

√
Xi+1i+1 + ε

)
= π.
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Proof. This follows from lemma 3.2.6: after considering the sum

n−1∑
i=1

arccos
(

Xii+1√
Xii + ε

√
Xi+1i+1 + ε

)
− arccos

(
X1n√

X11 + ε
√
Xnn + ε

)

=
n−1∑
i=1

arccos
( √

XiiXi+1i+1√
Xii + ε

√
Xi+1i+1 + ε

)
− arccos

(
−

√
X11Xnn√

X11 + ε
√
Xnn + ε

)

=
n∑
i=1

arccos
( √

XiiXi+1i+1√
Xii + ε

√
Xi+1i+1 + ε

)
− π

= 0

where we have used the equation arccos(−x) = π − arccos(x), and the hypothesis of

the lemma.

The last, somewhat mysterious fact we will need is the following:

Lemma 3.2.8. For any ε ≥ 0, the function fε : R2
+ → R given by

fε(x, y) = arccos(
√
xy√

x+ ε
√
y + ε

)

is convex.

Proof. We prove this by computing the Hessian matrix of fε.

H(fε) =

 ∂2

∂x2fε
∂2

∂x∂y
fε

∂2

∂x∂y
fε

∂2

∂y2fε

 .

This evaluates to


ε2y2(ε2+ε(5x+y)+x(4x+3y))

4(ε+x)7/2(ε+y)3/2(xy)3/2( ε(ε+x+y)
(ε+x)(ε+y))

3/2 − ε2

4(ε+x)3/2(ε+y)3/2√
xy( ε(ε+x+y)

(ε+x)(ε+y))
3/2

− ε2

4(ε+x)3/2(ε+y)3/2√
xy( ε(ε+x+y)

(ε+x)(ε+y))
3/2

ε2x2(ε2+ε(x+5y)+y(3x+4y))
4(ε+x)3/2(ε+y)7/2(xy)3/2( ε(ε+x+y)

(ε+x)(ε+y))
3/2

 .

Note that if ε, x, y ≥ 0, then the diagonal entries of this matrix are nonnegative.

52



Consider the Hessian determinant of this function if x, y > 0:

det(H(fε)) = ε(ε(x+ y) + 3xy)
4xy(ε+ x)2(ε+ y)2(ε+ x+ y) .

This is also nonnegative on this domain.

These two facts about H(fε) are enough to determine that it is positive semidefinite,

and so f is convex.

Proof of Theorem 3.2.3. Fix some X in normal form. We wish to show that there is

some ε ≤ 1
n
( 1

cos( π
n

) − 1) so that X + εIn is completable to a PSD matrix with rank 2.

We want to apply the condition in lemma 3.2.7. Consider the function

g(ε) =
n∑
i=1

arccos
( √

XiiXi+1i+1√
Xii + ε

√
Xi+1i+1 + ε

)
.

Lemma 3.2.7 implies if ε is such that g(ε) = π, then in fact there is a rank 2 PSD

completion of X + εIn. We will show that g(0) = 0 and g( 1
n
( 1

cos( π
n

) − 1)) ≥ π, so

that by the intermediate value theorem, there must be ε ∈ [0, 1
n
( 1

cos( π
n

) − 1)] so that

g(ε) = π, yielding the result.

First note that if ε = 0, then

n∑
i=1

arccos
( √

XiiXi+1i+1√
Xii + ε

√
Xi+1i+1 + ε

)
=

n∑
i=1

arccos(1) = 0 < π,

Now, we want to show that if ε = 1
n
( 1

cos( π
n

) − 1), then g(ε) ≥ π. We use lemma
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3.2.8 and the fact that Tr(X) = 1 to see that

g(ε) = n
n∑
i=1

1
n
fε (Xii, Xi+1i+1)

≥ nfε

(
1
n

n∑
i=1

Xii,
1
n

n∑
i=1

Xii

)

= nf
( 1
n
,

1
n

)
= n arccos( 1

1 + nε
)

= n arccos(cos(π
n

))

= π,

as desired.

Thus, there is some ε ≤ 1
n
( 1

cos( π
n

) − 1) satisfying the condition of lemma 3.2.7.

To see that this value of ε is in fact attained for some X, we can use the matrix X

where Xii = 1
n

for each i, X12 = − 1
n
, and each other specified off-diagonal entry is 1

n
.

This matrix can be verified to have λmin(X) = 1
n
(1− 1

cos( π
n

)) using the cycle conditions

found in [36].

We note that asymptotically 1
n

(
1

cos( π
n

) − 1
)

is O( 1
n3 ).

3.2.2 Extensions of Theorem 3.2.3

We conclude this section by noting some extensions of Theorem 3.2.3 to other complexes.

We will say that a graph G is cycle dominated if ε(χ(G)) = max ε(Cn), where the

maximum is over all induced cycles with at least 4 vertices contained in G.

It is a clear consequence of the the cycle completability results that if G is series

parallel or chordal, then G is cycle dominated. In fact, [27] shows that a much larger

range of graphs is cycle dominated beyond just these classes. This suggests that there

may be some sense in which the requirement of being chordal is too stringent for use
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in these semidefinite programming contexts, at least as far as approximation results

are concerned.

3.3 Connections to hyperbolic polynomials

We will conclude this section on approximate PSD completions with some results

concerning specifically the set ∆ =
(

[n]
k

)
, all sets of size at most k in [n]. We will

make the notation Fn,k =M(
(

[n]
k

)
) and Sn,k = P(

(
[n]
k

)
). Explicitly, Sn,k is the set of

matrices in Rn×n
sym with the property that every k × k principal submatrix is positive

semidefinite.

We will study this cone, and in particular, how it relates to the hyperbolicity cone

ΛI(cn,k) defined in Equation (2.3.1).

Theorem 3.3.1. For any n ≥ k ≥ 1, we have that

Sn,k ⊆ ΛI(cn,k).

Proof. We first show that for any X in the interior of Sn,k,

cn,k(X) > 0.

For this, recall that

cn,k(X) =
∑

S⊆[n]:|S|=k
det(X|S),

If X is in fact in the interior of Sn,k, then for every S ⊆ [n] with |S| = k, X|S ≻ 0,

and so det(X|S) > 0. Because each of these summands is positive, we have that

cn,k(X) > 0.

Therefore, in particular, we have that cn,k(X) does not vanish on the interior of

Sn,k Now, we note that I is in the interior of Sn,k, and because Sn,k is convex and

connected, it follows that the interior of Sn,k is contained in the connected component
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of Rn×n
sym \ V(cn,k) containing I.

By Item 3, the interior of Sn,k is contained in ΛI(cn,k), and since Sn,k is full

dimensional, and ΛI(cn,k) is closed, we must have that Sn,k ⊆ ΛI(cn,k).

Remark 7. It is not hard to modify this proof to show that in fact, Sn,k is a subset

of ΛI(P ) for any PSD-stable LPM polynomial P of degree k.

We can use this fact to characterize the gapof this complex explicitly:

Theorem 3.3.2. We have that

ε

((
[n]
k

))
= n− k
n(k − 1) .

In words, for any X ∈ Sn,k with trace 1, λmin(X) ≥ k−n
n(k−1) and there is some X ∈ Sn,k

with trace 1 meeting this inequality with equality.

Proof. To see that ε(
(

[n]
k

)
) ≥ n−k

n(k−1) , we first exhibit a matrix X ∈ Sn,k so that

λmin(X) = k−n
n(k−1) . We then let

G(n, k) = k

n(k − 1)In −
1

n(k − 1)1⃗n1⃗⊺
n.

Here, we use the subscripts to emphasize that these matrices are of size n× n. Note

that Tr(G(n, k)) = 1, and that

λmin(G(n, k)) = k

n(k − 1) −
1

n(k − 1)λmax(⃗1n1⃗⊺
n) = k − n

n(k − 1) .

To see that G(n, k) ∈ Sn,k, we note that any k × k submatrix of G(n, k) has the form

k

n(k − 1)Ik −
1

n(k − 1)1⃗k1⃗⊺
k,

which has minimum eigenvalue 0.
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Now, we need to show that for any X ∈ Sn,k with trace 1, λmin(X) ≥ k−n
n(k−1) . We

can in fact show that for any X ∈ ΛI(cn,k) with trace 1, λmin(X) ≥ k−n
n(k−1) . Suppose

for a contradiction that X ∈ ΛI(cn,k) with trace 1 and λmin(X) < k−n
n(k−1) . Let λ⃗ denote

the vector of eigenvalues of X in ascending order, so that λ⃗1 = λmin(X). We now

claim that λ⃗ ∈ Λ1⃗(en,k). For this, we use the fact that

en,k(λ⃗+ t⃗1) = cn,k(X + tI).

Therefore, if X satisfies Item 1 in the definition of membership in ΛI(cn,k), then λ⃗

satisfies Item 1 for membership in Λ1⃗(en,k).

Now, we consider the following minimization problem:

min λ⃗1

s.t.
n∑
i=1

λ⃗i = 1

λ⃗ ∈ Λ1⃗(en,k)

. (3.3.1)

This is a convex optimization problem, and because λ⃗ ∈ ΛI(en,k) and ∑n
i=1 λ⃗i =

Tr(X) = 1, we have a feasible solution where λ⃗1 <
k−n
n(k−1) Now, we note that this

problem is symmetric with respect to the last n− 1 variables, in the sense that if λ⃗

is feasible and π is a permutation of [n] so that π(1) = 1, then π(λ⃗) is also feasible.

Therefore, we may consider the symmetric solution ∑π∈Sn:π(1)=1 π(λ⃗) is feasible with

the same objective value. We conclude that there is an optimal solution to this

program satisfying λ⃗i = λ⃗j when n ≥ i, j > 1. Making the replacement a = λ⃗1 and

b = 1−a
n−1 be the common value of λ⃗i for i = 2, . . . , n, we have therefore reduced this to
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a 1 dimensional optimization problem:

min a

s.t. a+ (n− 1)b = 1

(a, b, b, . . . , b) ∈ Λ1⃗(en,k)

. (3.3.2)

We see that this must have a solution on the boundary of Λ1⃗(en,k), i.e. we must have

that at an optimal a, b,

en,k(a, b, b, . . . , b) = a

(
n− 1
k − 1

)
bk−1 +

(
n− 1
k

)
bk = 0.

That is,
(
n−1
k−1

)
a+

(
n−1
k

)
b = 0. Solving the resulting linear system of equations for a

and b yields

a = k − n
n(k − 1) , b = (n− 1)k

n(k − 1)

This contradicts the fact that there is a feasible solution with an objective value

smaller than k−n
n(k−1) .

Remark 8. Various extensions of this result are discussed in [38]. For example, the

same proof can be made to work if the constraint that Tr(X) = 1 is replaced by other

convex constraints that are invariant under orthogonal change of basis. Moreover, it

can be shown that in fact, G(n, k) is the unique minimizer of λmin(X) for any such

constraint.

This follows from the more general fact, shown in [38] that if X ∈ Sn,k is nonsin-

gular, but has the property that all k × k submatrices are singular, then X must be of

the form DG(n, k)D for some diagonal matrix D. Note that if X is on the boundary

of ΛI(cn,k), then cn,k(X) = 0, and for X ∈ Sn,k, this can only occur when all k × k

submatrices are singular.
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3.3.1 Connections to sparse quadratic programming

We conclude this section by describing how the containment Sn,k ⊆ ΛI(cn,k) can be

used to produce heuristics for sparse quadratic programming (which is defined in the

introduction to this chapter). This work was originally conducted in [39].

If A1 is positive semidefinite, the conical optimization problem

min Tr(A0X)

s.t. Tr(A1X) = 1

X ∈ Fn,k

(3.3.3)

has a dual given by
max t

s.t. A0 − A1t ∈ Sn,k.
(3.3.4)

We denote the common optimal value of these programs by α.

We may consider replacing Sn,k by ΛI(cn,k) in the definition, to obtain a value α′

so that α′ ≥ α. We may interpret this value as ensuring that there is some X ∈ Fn,k

which obtains an optimal value of at most α′.

We will note though that the value of this program can in fact be easily computed

in terms of the roots of univariate polynomials.

Theorem 3.3.3. If A1 ≻ 0, then the optimal value of the program

max t

s.t. A0 − A1t ∈ ΛI(cn,k).
(3.3.5)

is given by

max{t : cn,k(A1t− A0) = 0}.

Proof. We note that because A1 is positive definite, A1 is in the interior of ΛI(cn,k)
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and −A1 is not in ΛI(cn,k). We conclude that for t large enough, A1t−A0 ∈ ΛI(cn,k),

and for t a sufficiently small negative number, A1t− A0 ̸∈ ΛI(cn,k).

Therefore, the value of this problem is bounded, and its value is obtained when

A1t− A0 is on the boundary of the hyperbolicity cone of ΛI(cn,k), which implies that

cn,k(A1t − A0) = 0 when t is at its optimum. To see that it is the largest value of

t so that this is the case, note that if X ∈ ΛI(cn,k), then by the definition of the

hyperbolicity cone, for all cn,k(X + tA1) ̸= 0 for t > 0, and if we let X = A1t − A0,

then this implies that there are no larger roots of this polynomial.

We may apply this relaxation to some of the standard problems we listed above.

For example, if we consider the sparse PCA problem, we obtain that the largest

k-sparse eigenvector of A is

max{v⊺Av : ∥v∥2 = 1, ∥v∥0 ≤ k} ≥ max{t : cn,k(It− A) = 0}.

Compare this to the formula for the maximum eigenvalue of a matrix A, which is

max{t : det(It− A) = 0}.

We can give even nicer expressions for the sparse linear regression problem:

Theorem 3.3.4. Let A have rank at least k, then for the sparse regression problem in

Equation (3.0.1), the lower bound arising from Theorem 3.3.3 is

p(A⊺(I + bb⊺)A)
p(A⊺A) − 1.

Proof of Theorem 3.3.4. We consider the univariate polynomial

q(y) = cn,k(A⊺Ay − A⊺bb⊺A) = 0.
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Notice that when y = 0, we obtain q(y) = cn,k(A⊺bb⊺A). Now, notice that

X = A⊺bb⊺A is rank 1, and therefore, det(X|S) vanishes to order k − 1 at this point.

Because cn,k is a linear combination of determinants, cn,k must then have a root of

multiplicity at least k − 1 at 0.

Because cn,k(A⊺A) ̸= 0, and A⊺A is positive semidefinite, we have that any root of

this polynomial must be nonnegative, so we have that

cn,k(A⊺Ay − A⊺bb⊺A) = yk−1(ay − b) = ayk − byk−1

for some a, b ≥ 0. Hence, the maximal root of cn,k must be b
a
.

We can compute a and b explicitly. Notice that

lim
y→∞

cn,k(A⊺Ay − A⊺bb⊺A)
yk

= cn,k(A⊺A) = a,

and that

cn,k(−A⊺A− A⊺bb⊺A) = (−1)kcn,k(A⊺Ay + A⊺bb⊺A) = (−1)k(a+ b)

From this, we obtain that

b

a
= cn,k(A⊺Ay + A⊺bb⊺A)

cn,k(A⊺A) − 1,

as desired.

Remark 9. The quantity described in Theorem 3.3.4 can also be interpreted as

the expected value a random variable representing the loss resulting from first ran-

domly choosing a set of k columns of A from a determinantal point process and then

performing regression using those columns.

We will conclude by asking some questions: is it possible to algorithmically find a
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set k-sparse vector x meeting the bound described by Theorem 3.3.3? Perhaps more

importantly, is it the case that this bound is in fact useful?

In fact, it is possible to find this value in polynomial time, as described in [39], but

this bound by itself is not useful. Fortunately, the methods described here typically

returns a sparse vector which has much better loss than what was originally stated.

For this, we will need to define a new class of polynomials, which we refer to as

conditional polynomials. For a fixed, n, and S ⊆ [n] with |S| ≤ k, we let

cn,k,S(X) =
∑

S⊆T⊆[n]
|T |=k

det(X|T ).

This polynomial can easily be seen to be PSD stable using Theorem 2.3.2, and

Sn,k ⊆ ΛI(cn,k,S) for any S with |S| ≤ k. The proof of Theorem 3.3.3 also shows that

an upper bound for the optimal value of Equation (3.3.4) is given by

max{t : cn,k,S(A1t− A0) = 0}.

If we let ηS = max{t : cn,k,S(A1t− A0) = 0}, then we can show the following:

Theorem 3.3.5. Fix any S with |S| < k, and for any i ∈ [n] let Si = S ∪ {i}. Then,

there exists i ∈ Sc so that

ηSi
≤ ηS.

Proof. We show this by noting the algebraic identity that if Si = S ∪ {i}, then

cn,k,S(X) = 1
k − |S|

∑
i∈Sc

cn,k,Si
(X).

This follows by considering each summand of cn,k,S(X) and noting that it appears in

precisely k − |S| polynomials in the sum on the right.
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Therefore,

cn,k,S(A1ηS − A0) = 1
k − |S|

∑
i∈Sc

cn,k,Si
(A1ηS − A0) = 0.

There must therefore be some i so that cn,k,Si
(A1ηS − A0) ≤ 0. Fixing this i, since

limt→∞ cn,k,Si
(A1ηS − A0) > 0, we have by the intermediate value theorem that there

is a root of cn,k,Si
(A1t− A0) which is at least ηS, as desired.

We can also compute this polynomial efficiently using the notion of Schur comple-

ments, which was defined in the introduction of this thesis.

Lemma 3.3.6. We have that

cn,k,S(X) = det(X|S)cn−|S|,k−|S|(X \ S).

Proof. We recall the Schur complement lemma, that for any S ⊆ [n], det(X) =

det(X|S) det(X \ S).

It is not hard to see from the definition that for any T ⊆ Sc, (X \S)|T = X|T∪S \S.

Therefore,

cn,k,S(X) =
∑

S⊆T⊆[n]
|T |=k

det(X|T )

=
∑
T⊆Sc

|T |=k−|S|

det(X|S∪T )

=
∑
T⊆Sc

|T |=k−|S|

det(X|S) det(X|S∪T \ S)

= det(X|S)
∑
T⊆Sc

|T |=k−|S|

det((X \ S)|T )

= det(X|S)cn−|S|,k−|S|(X \ S).
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Putting these ideas together, we reach the greedy algorithm, Algorithm 1, for

finding a good solution to the sparse quadratic programming. By carefully performing

Algorithm 1 The Greedy Conditioning Heuristic
T ← ∅
for t = 1 . . . k do

j ← argmax ηT+j
T ← T + j

end for
return T

the linear algebraic manipulations needed to compute the ηT , it is possible to obtain

a practically efficient algorithm for finding these values, as was done in [39].
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CHAPTER 4

HIDDEN CONVEXITY AND ALGEBRAIC TOPOLOGY

We use the term ‘hidden convexity’ to refer to situations in which the image of a

nonconvex set under a possibly nonlinear map is unexpectedly convex. While this

phenomenon may seem rather esoteric, there are a wide range of examples occuring

in the literature, and such results have been impactful in the study of nonconvex

optimization.

There is a vast literature on the convexity of sets known as the generalized numerical

ranges of a collection of matrices, which we will attempt to outline in Section 4.1. Our

goal will be to give a proof of these results in a unified framework that involve facts

about the algebraic topology of homogeneous spaces of Lie groups.

4.1 History and preliminary notions

There is a vast literature on the convexity of sets known as the generalized numerical

ranges of a collection of matrices. These results generalize the well known Toeplitz-

Hausdorff Theorem [40, 41, 42]. The Toeplitz-Hausdorff Theorem states that if A is

an n×n hermitian matrix with n ≥ 3, then the numerical range of A is convex, where

the numerical range of A is defined as {x∗Ax : x∗x = 1}. Some generalizations of this

result consider the image of the sphere under a larger number of quadratic maps [43,

44, 45]. Others regard more complicated domains such as the set of symmetric or

hermitian matrices with fixed eigenvalues [46, 47], or even more generally, the orbit of

an element of a Lie algebra under the adjoint action of an associated Lie group [48].

Such theorems have consequences related to the well known S-lemma in optimization

[49].
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4.2 Summary of results

We summarize our new approach as Theorem 4.3.1, after stating some definitions. We

will also give a few examples of explicit applications of Theorem 4.3.1 to generalized

numerical ranges. The main advantage of this approach is that once the framework is

set up, specializing to the above examples requires only recalling some well-known

theorems. In this way, our proofs help show how these hidden convexity results

are really consequences of basic geometric and topological properties of the relevant

groups.

As an application of Theorem 4.3.1, we give a common generalization of two known

theorems, Theorem 4.2.2 and Theorem 4.2.1, in Theorem 4.5.1. While we will defer

the statement of Theorem 4.3.1 until we have built up some more generalizations, we

will state the two theorems which we aim to generalize here.

Theorem 4.2.1 concerns higher dimensional analogues of the Toeplitz-Hausdorff

Theorem. To state it, we will need to recall that an eigenvalue of a matrix X is

nondegenerate if its corresponding eigenspace is one dimensional. Following [50], we

say that a subspace of Rn×n
sym is noncrossing if every nonzero matrix in that subspace

has only nondegenerate eigenvalues. we say that a subspace of Rn×n
sym is k-weakly

noncrossing if every nonzero matrix has the property that its k largest eigenvalues are

all nondegenerate.

Theorem 4.2.1 (Theorem 5.1 of [45]). Let A1, . . . , Ak be n×n symmetric or hermitian

matrices with n ≥ 3, with the property that every nonzero matrix in their linear span

has a nondegenerate maximum eigenvalue. Then, {(x⊺A1x, . . . , x
⊺Akx) : ∥x∥ = 1} is

convex.

Note that [45] shows more; rather than requiring that the maximum eigenvalue

be nondegenerate, they only require that the corresponding eigenspace have constant

dimension in the span of A1, . . . , Ak.
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Theorem 4.2.2 is a generalization of Toeplitz-Hausdorff Theorem involving the

set of symmetric matrices with fixed eigenvalues. For a field F which is either C or

R, we let Fn×n
sym denote the vector space of symmetric and hermitian n× n matrices

respectively. For λ ∈ Rn, let MF
λ denote the set of matrices in Fn×n

sym whose eigenvalues

are the entries of λ (counting multiplicity), in some order.

Theorem 4.2.2 (Theorems from [46, 47]). Fix some λ ∈ Rn. Let T : Rn×n
sym → R2 be

linear with n ≥ 3, then T (MR
λ ) is convex. Similarly, let T : Cn×n

sym → R3 be linear (as a

map of real vector spaces) with n ≥ 3, then T (MC
λ ) is convex.

The gist of Theorem 4.5.1 is that as long as A1, . . . , Ak ∈ Fn×n span a noncrossing

subspace, then T (MF
λ ) is convex, as long as OF(n) satisfies some homotopy theoretic

conditions. These conditions are easily shown to be satisfied when specialized to these

two cases.

We will also give another proof of a result from [48]. Fix some R ∈ Rn×m, and let

SR denote the orbit of R under the action of SO(n)× SO(m), i.e. SR = {U⊺RV : U ∈

SO(n), V ∈ SO(m)}.

Theorem 4.2.3. Let n,m ≥ 3, then for any linear map T : Rn×m → R2, T (SR) is

convex.

This result also generalizes a result in [51] stating that the image of SO(n) under

a linear map into R2 is always convex.

The layout of this chapter is as follows: in Section 4.3, we define the notion of

continously maximized functions and prove our main theorem. In Section 4.4, we give

some examples of such continuously maximized functions. In Section 4.5, we show

the aforementioned hidden convexity theorems. Finally, in Section 4.6, we give some

applications to optimization over the set of rotation matrices which were originally

discussed in [51].
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4.3 Continuously maximized functions

Let X be a compact path-connected topological space and let Sk denote the unit

sphere in Rk+1. We say a continuous function f : X → Rk+1 is continuously maximized

by a continuous function ϕ : Sk → X if for every v ∈ Sk,

max
x∈X
⟨v, f(x)⟩ = ⟨v, f(ϕ(v))⟩.

We say f is continuously maximized (omitting the dependence on ϕ) if it is continuously

maximized by some continuous function ϕ. The function

h(v) = max
x∈X
⟨v, f(x)⟩

is the support function of f(X), and is closely related to the convex hull of f(X).

We will let πm(X, x0) denote the mth homotopy group of the topological space X

with basepoint x0. In cases in which X is path-connected (as it will be in all of our

examples), we will omit the dependence on the basepoint. We will use 0 to denote the

trivial group with one element, and say that a group homomorphism is nonzero if its

image is not 0.

Theorem 4.3.1. Let X be a compact path-connected topological space. Suppose that

there is some m so that πm(Sk) ̸= 0, but there are no nonzero group homomorphisms

from πm(X) to πm(Sk). Let f : X → Rk+1 be continuously maximized. Then the

image f(X) is convex.

A special case of Theorem 4.3.1 (which follows immediately) is when m = k, in

which case πk(Sk) = Z, and it suffices for the abelianization πk(X)′ to be finite for

the homotopy theoretic conditions to be satisfied.

Corollary 4.3.2. Let X be a compact path-connected topological space, so that πk(X)′

is finite. If f : X → Rk+1 is continuously maximized, then the image f(X) is convex.
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The approach used in the proof of this theorem is similar to that of [45], which

also considered the support function, though here we use the homotopy groups of X

more explicitly. We next show some useful lemmas about continuously maximized

functions, which we will use in our proof of Theorem 4.3.1 in Section 4.3.2.

Also, while we use homotopy groups in the statements of these theorems, the proof

of this result can easily be modified to use homology or cohomology groups, which

may be easier to calculate in some circumstances. We mostly appeal to homotopy

groups in our settings, as we will only be considering spaces whose homotopy groups

are already well understood.

4.3.1 Preliminaries On Continuously Maximized Functions

Recall that the convex hull of a set S ⊆ Rk, denoted convS, is the intersection of all

convex sets containing S. It is well known that if S is compact, then so is convS, and

for any w ∈ Rk, maxz∈S ⟨w, z⟩ = maxz∈convS ⟨w, z⟩.

We use the notation Y o to denote the topological interior of Y .

Lemma 4.3.3. Let f : X → Rk+1 be continuously maximized by ϕ. Let Y =

conv f(X). Then Y is either a single point, or it has nonempty interior.

Proof. Suppose for contradiction that Y o is empty and that Y is not a single point.

Because Y is convex, Y o is empty if and only if there is a v ∈ Sk so that the value of

⟨v, y⟩ is constant for y ∈ Y . Because Y is not a single point, there is some w ∈ Sk so

that

max
y∈Y
⟨w, y⟩ ≠ min

y∈Y
⟨w, y⟩ = −max

y∈Y
⟨−w, y⟩.

Consider the curve γ(ϵ) = v+ϵw
∥v+ϵw∥ which is well defined on the interval [−δ, δ] for

δ small enough. Note that if ϵ > 0, then x maximizes ⟨γ(ϵ), f(x)⟩ if and only if x

maximizes ⟨w, f(x)⟩. Similarly, if x maximizes ⟨γ(ϵ), f(x)⟩ for ϵ < 0, then x maximizes

⟨−w, f(x)⟩.
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By continuity of ϕ and γ, we have that

max
x∈X
⟨w, f(x)⟩ = lim

ϵ→0+
⟨w, f(ϕ(γ(ϵ)))⟩ = lim

ϵ→0−
⟨w, f(ϕ(γ(ϵ)))⟩ = −max

x∈X
⟨−w, f(x)⟩,

which is a contradiction, as this implies that maxy∈Y ⟨w, y⟩ = −maxy∈Y ⟨−w, y⟩

Our next lemma concerns properties of the function f ◦ ϕ, when f is continuously

maximized by ϕ.

Lemma 4.3.4. Let f : X → Rk+1 be continuously maximized by ϕ, and let Y =

conv f(X). Let ψ = f ◦ϕ. Then for any y ∈ Y o, and any w ∈ Sk, ⟨w,ψ(w)⟩ > ⟨w, y⟩.

Proof. The definition of continuous maximization implies that

max
z∈f(X)

⟨w, z⟩ = max
x∈X
⟨w, f(x)⟩ = ⟨w, f(ϕ(w))⟩ = ⟨w,ψ(w)⟩.

On the other hand, for y ∈ Y o, maxz∈Y ⟨v, z⟩ > ⟨v, y⟩. This shows the result

Our next lemma is the main technical component of our homotopy argument.

Intuitively, if we consider ψ = f ◦ ϕ, we would like to argue that this defines a ‘nice’

parameterization of the boundary of conv f(X). This is in the sense that for any y in

the interior of conv f(X), the map ψ in fact defines a homotopy equivalence between

the sphere and Rk+1 \ {y}. If this is the case, then it is visually intuitive that if the

map ψ turns out to be contractible for homotopy theoretic reasons, then y will be in

the image of f .

Lemma 4.3.5. Let f : X → Rk+1 be continuously maximized by ϕ. Let ψ : Sk → Rk+1

be the composition of ϕ and f . Let Y = conv f(X). For any y ∈ Y o, ψ is a homotopy

equivalence between Sk and Rk+1 \ {y}.
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Proof. Fix a y ∈ Y o for the remainder of this argument. For x ∈ Rk+1, we will denote

[x] = x
∥x∥ ∈ S

k, which is clearly continuous on Rk+1 \ 0.

We define the map τ : Rk+1 \ y → Sk by letting τ(x) = [x− y] ∈ Sk. This map is

clearly continuous on its domain.

To show that ψ is a homotopy equivalence, it suffices to argue that ψ ◦ τ is

homotopic to the identity on Sk and τ ◦ ψ is homotopic to the identity map on

Rk+1 \ y.

First, we show τ ◦ ψ is homotopic to the identity on Sk. Consider the function

h : Sk × [0, 1]→ Rk+1 defined by

h(v, t) = tv + (1− t)(ψ(v)− y).

Then define the normalized map g : Sk × [0, 1] → Sk by g(v, t) = [h(v, t)]. To see

that g is well defined and continuous, we only need to show that h(v, t) ̸= 0 for any

v, t ∈ Sk × [0, 1]. For any v ∈ Sk,

⟨v, h(v, t)⟩ = t⟨v, v⟩+ (1− t)(⟨v, ψ(v)⟩ − ⟨v, y⟩).

Now, ⟨v, v⟩ = 1 for all v ∈ Sk, and ⟨v, ψ(v)⟩−⟨v, y⟩ > 0 for all v ∈ Sk by Lemma 4.3.4.

In particular, ⟨v, h(v, t)⟩ > 0 for all v ∈ Sk and t ∈ [0, 1], so h(v, t) ̸= 0 for any

v, t ∈ Sk × [0, 1].

Since g(v, 0) = τ(ψ(v)), and g(v, 1) = v, g is a homotopy from τ ◦ψ to the identity

map on Sk.

Now, we want to show that ψ ◦ τ is homotopic to the identity on Rk+1 \ y. To see

this, let

g(x, t) = tx+ (1− t)(ψ(τ(x))).

Again, we need to show that this is well defined in the sense that g(x, t) ̸= y for any
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x, t ∈ (Rk+1 \ y)× [0, 1]. Consider

⟨x− y, g(x, t)− y⟩ = t⟨x− y, x− y⟩+ (1− t)⟨x− y, ψ(τ(x))− y⟩.

Now, note that ⟨x− y, x− y⟩ > 0 for x ∈ Rk+1 \ y, and

⟨x− y, ψ ◦ τ(x)− y⟩ = ∥x− y∥(⟨τ(x), ψ ◦ τ(x)⟩ − ⟨τ(x), y⟩) > 0,

where we apply Lemma 4.3.4 to the vector τ(x).

We conclude that ⟨x − y, g(x, t) − y⟩ > 0 for all x, t ∈ (Rk+1 \ y) × [0, 1], and

so g(x, t) ̸= y, as desired. g(x, t) is also clearly continuous on its domain. Since

g(x, 0) = ψ ◦ τ(x) and g(x, 1) = x, we conclude that g is a homotopy from ψ ◦ τ to

the identity.

4.3.2 Proof of Theorem 4.3.1

Let Y = conv f(X) be the convex hull of f(X). We will show that f(X) = Y .

Clearly, if Y is a single point, then the result holds. We can thus apply Lemma 4.3.3

to say that the interior Y o is nonempty. Now, suppose that there is some y ∈ Y o so

that y ̸∈ f(X), so that we may think of f as a map from X to Rk+1 \ {y}.

If ψ = f ◦ ϕ, then the following diagram of continuous maps commutes:

Sk

ϕ

��

ψ

$$

X
f
// Rk+1 \ y
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This translates to a commutative diagram of homotopy groups

πm(Sk)
ϕ∗

��

ψ∗

''

πm(X)
f∗
// πm(Rk+1 \ y)

,

where h∗ denotes the map on homotopy groups induced by the continuous map h. Now,

we make a few notes on this diagram: ψ is a homotopy equivalence by Lemma 4.3.5,

so ψ∗ is an isomorphism; in particular it is a nonzero map since πm(Sk) is nonzero.

However, this is a contradiction, as ψ∗ = f ∗ ◦ ϕ∗, and f ∗ : πm(X)→ πm(Rk+1 \ y) ∼=

πm(Sk) is the zero map by our assumption that πm(X) has no nonzero homomorphisms

to πm(Sk).

We conclude that f does not define a map to Rk+1 \ y, i.e. that y must be in

the image of f . This implies that Y o ⊆ f(X), and by compactness, this implies that

the closure of Y o is also contained in f(X). Since Y is compact, convex, and has

nonempty interior, Y is the closure of its interior, so f(X) = Y , as desired.

4.4 Examples of continuously maximized functions from noncrossing sub-

spaces

Here, we will give some examples of continuously maximized functions arising from

noncrossing subspaces, as defined in [50].

Firstly, let us give notation for some familiar objects from linear algebra. Recall

that Fn×n
sym denotes the space of n× n symmetric real matrices when F = R and the

space of n × n hermitian matrices when F = C. Let OF(n) denote the orthogonal

group when F = R and the unitary group when F = C. For matrices A and B of the

same dimensions, we let ⟨A,B⟩ = Tr(A†B).

For x ∈ Fn×n
sym , let λ(x) ∈ Rn be the vector of eigenvalues of x (counting multiplicity)
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in descending order. Fix µ ∈ Rn with entries in descending order, and let

MF
µ = {x ∈ Fn×n

sym : λ(x) = µ} = {UDiag(µ)U † : U ∈ OF(n)}.,

where Diag(µ) denotes the diagonal matrix whose diagonal entries correspond to those

of µ.

A linear subspace L ⊆ Fn×n
sym is noncrossing if every nonzero matrix in L has

only nondegenerate eigenvalues. More generally, we will say a linear subspace L ⊆

Fn×n
sym is k-weakly noncrossing if every nonzero matrix in L has the property that

its k largest eigenvalues are all nondegenerate. The Von Neumann-Wigner crossing

rule[von1993verhalten] (which we found referenced in [50]) states that a generic

2 dimensional subspace of Rn×n
sym is noncrossing, and that a generic 3 dimensional

subspace of Cn×n
sym is noncrossing. Higher dimensional noncrossing subspaces are not

common, and noncrossing subspaces of dimension greater than 2 only exist for certain

values of n due to Adam’s theory of linearly independent vector fields on spheres [50].

Lemma 4.4.1. Let µ ∈ Rn be a vector with entries in descending order so that µi = 0

for i > k. Let A1, . . . , Ad+1 ∈ Fn×n
sym be linearly independent elements of a k-weakly

noncrossing subspace of Fn×n, then the function f : MF
µ → Rd+1 defined by

f(x) = (⟨A1, x⟩, . . . , ⟨Ad+1, x⟩)

is continuously maximized.

Proof. For v ∈ Sk, let A(v) = ∑d+1
i=1 viAi.

Because the Ai span a k-weakly noncrossing subspace, the largest k eigenvalues

λ1(A(v)) > · · · > λk(A(v)) are nondegenerate on Sk. This implies that if we let νi(v)

be any unit norm eigenvector of A(v) with eigenvalue λi(A(v)), the rank 1 matrices

Vi(v) = νi(v)νi(v)† are continuous functions on Sk. 1

1While this fact is standard, it can be seen explicitly by noting that λi(·) is a continuous function
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We then define

ϕ(v) =
k∑
i=1

µiVi(v).

Note that ϕ(v) ∈MF
µ . ϕ is also clearly continuous because each Vi is.

We want to argue that f is continuously maximized by ϕ, i.e. that

⟨v, f(ϕ(v))⟩ = max
x∈MF

µ

⟨v, f(x)⟩.

To see this, first note that

⟨v, f(x)⟩ =
k+1∑
i=1

vi⟨Ai, x⟩ = ⟨A(v), x⟩.

Because MF
µ is invariant under OF(n),

max
x∈MF

µ

⟨A(v), x⟩ = max
x∈MF

µ

⟨Λ(v), x⟩,

where Λ(v) = Diag(λ1(A(v)), . . . , λn(A(v))). It follows from the Schur component of

the Schur-Horn that this is maximized when x is a diagonal matrix with ascending

diagonal entries, i.e.

max
x∈MF

µ

⟨A(v), x⟩ = ⟨Λ(v),Diag(µ)⟩ = ⟨v, f(ϕ(v))⟩.

We will also want to consider analogous concepts for singular values, rather than

eigenvalues. For this, we say a subspace L ⊆ Fn×m is k-weakly singularly noncrossing

if the k largest singular values of every nonzero matrix in L are nondegenerate.

Let SO(n) be special orthogonal group, consisting of the elements of OR(n) which

on Fn×n
sym and that V (v) = 1

Tr(X(v)) X(v), where X is the adjugate matrix of A(v)− λi(A(v))I.
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have determinant 1. Let R ∈ Rn×m, and let

SR = {U1RU
⊺
2 : U1 ∈ SO(n), U2 ∈ SO(m)}.

That is, SR is the orbit of R under the action of SO(n) × SO(m) by multiplication

on the left and right. The uniqueness properties of the singular value decomposition

of a matrix implies that there is a unique element D ∈ SR which is diagonal and so

that D11 ≥ D22 ≥ . . . Dn−1n−1 ≥ |Dnn|, and we call these numbers the special singular

values of the matrix R.

We will need a lemma regarding optimization of linear functions on SR, which is

an easy corollary of [52, Corollary 3] or [53].

Lemma 4.4.2. Let A,R ∈ Rn×m, with n < m. Suppose that the special singular values

of A are a1 ≥ · · · ≥ |an|, and that the special singular values of R are r1 ≥ · · · ≥ |rn|.

Then,

max
X∈SR

Tr(A⊺X) =
n∑
i=1

airi.

Lemma 4.4.3. Let R ∈ Rn×m be diagonal so that Ri,i = 0 for i > k. Let A1, . . . , Ad+1

be linearly independent elements of a k-weakly singularly noncrossing subspace of

Rn×m. Then the map

f : SR → Rd+1

defined by f(x) = (⟨A1, x⟩, . . . , ⟨Ad+1, x⟩) is continuously maximized.

Proof. As in the proof of Lemma 4.4.1, for v ∈ Sk, we let A(v) = ∑d+1
i=1 viAi.

Because the Ai span a k-weakly singularly noncrossing subspace, the largest k

singular values σ1(A(v)) > · · · > σk(A(v)) are nondegenerate on Sk. Let ui(v) and

wi(v) be, respectively, the left and right unit singular vectors of A(v) associated to

the singular value σi(A(v)). The nondegeneracy of these singular values imply that
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the functions

Vi(v) = ui(v)wi(v)⊺

are continuous functions on Sk.

We then define

ϕ(v) =
k∑
i=1

RiiVi(v).

Note that ϕ(v) ∈ SR because its special singular values are those of R. ϕ is also clearly

continuous because each Vi is.

We want to argue that f is continuously maximized by ϕ, i.e. that

⟨v, f(ϕ(v))⟩ = max
x∈SR

⟨v, f(x)⟩.

This follows because

⟨v, f(x)⟩ =
k+1∑
i=1

vi⟨Ai, x⟩ = ⟨A(v), x⟩.

We may then apply Lemma 4.4.2 to see that

max
x∈SR

⟨A(v), x⟩ =
n∑
i=1

σi(A(v))Rii = ⟨v, f(ϕ(v))⟩.

4.5 Some Hidden Convexity Theorems

Now that we have given some examples of continuously maximized functions, we can

now see how to apply Theorem 4.3.1 in a few examples.

We start by stating the implication of Theorem 4.3.1 in light of Lemma 4.4.1. The

proof of the following theorem is immediate given these two results:

Theorem 4.5.1. Let µ ∈ Rn be a vector with entries in descending order so that
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µi = 0 for i > k. Let A1, . . . , Ad+1 ∈ Fn×n
sym be linearly independent elements of a

k-weakly noncrossing subspace of Fn×n. If, for some m, πm(Sd) ̸= 0, and there are no

nonzero group homomorphisms from πm(MF
µ ) to πm(Sd), then

{(⟨A1, x⟩, . . . , ⟨A1, x⟩) : x ∈MF
µ}

is convex.

First, we reprove Theorem 4.2.2 using our language.

Proof of Theorem 4.2.2. Fix µ ∈ Rn. Whether F = R or C, it suffices to show the

result for a dense set of choices of the linear maps T and vectors µ, since the remaining

cases follow easily from continuity.

We start with the case in which F = R, so that we may write T : Rn×n
sym → R2 in

the form

T (X) = (⟨A1, X⟩, ⟨A2, X⟩),

so that by Von Neumann-Wigner, a dense set of pairs A1, A2 ∈ Rn×n
sym span a noncrossing

subspace, so that by Lemma 4.4.1, we have that T : MR
µ → R2 is continuously

maximized for a dense set of T .

Assuming that T is continuously maximized, we are in position to apply Theo-

rem 4.3.1. It remains to show that π1(MR
µ ) is finite. This can seen quickly, as MR

µ is

acted on transitively by SO(n), and when µ has distinct entries, the stabilizer of a

point is finite, which implies that MR
µ is a finite quotient of a topological space with

finite fundamental group. This implies that the fundamental group of MR
µ is finite.

We consider the case in which F = C, so that we may write T : Cn×n
sym → R3 in the

form

T (X) = (⟨A1, X⟩, ⟨A2, X⟩, , ⟨A3, X⟩),

so that by Von Neumann-Wigner, a dense set of triples A1, A2, A3 ∈ Cn×n
sym span
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a noncrossing subspace, so that by Lemma 4.4.1, we have that T : MC
µ → R3 is

continuously maximized for a dense set of T .

Assuming that T is continuously maximized, we are in position to apply Theo-

rem 4.3.1. For this, we will show that π4(MC
µ ) = 0 for n ≥ 3, while π4(S2) = Z2 ([54]),

so that Theorem 4.3.1 applies.

Note that MC
µ is acted on transitively by OC(n), and therefore is homeomorphic

to OC(n)/OC(n)µ, where OC(n)µ denotes the stabilizer subgroup of µ. If the entries

of µ are distinct, this stabilizer is OC(1)n, the group of diagonal matrices in OC(n).

Therefore, MC
µ is homeomorphic to the flag variety, OC(n)/OC(1)n. We then have

that MC
µ can be thought of as a fiber bundle

OC(1)n ↪→ OC(n)→MC
µ

There is a long exact sequence of homotopy groups one of the entries of which is

0 ∼= π4(OC(n))→ π4(MC
µ )→ π3(OC(1)n) ∼= 0.

Here, the isomorphism π4(OC(n)) ∼= 0 for n ≥ 3 can be found in [55][Table 6.VII,

Appendix A.] (for these dimensions, this lies in the ‘stable range’, which implies it

is the same for all n larger than 3), and π3(OC((1)n) ∼= 0 is due to the fact that

π3(OC(1)) ∼= 0, and homotopy groups commute with products.

We also reprove Theorem 4.2.1 here:

Proof of Theorem 4.2.1. In our language, we may take A1, . . . , Ak to be linearly inde-

pendent elements of a 1-weakly noncrossing subspace of Fn×n
sym . By [56], we have that

k < n.
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Let µ =



1

0

. . .

0


∈ Rn. Let τ : Sd →MF

µ be such that τ(x) = xx⊺. Note that

{(x⊺A1x, x
⊺A2x, . . . , x

⊺Akx) : ∥x∥ = 1} = {(⟨A1, x⟩, ⟨A2, x⟩, . . . , ⟨Ak, x⟩) : x ∈MF
µ}.

Now by Theorem 4.5.1, since πk−1(Sk−1) = Z, it suffices to show that there are no

nonzero group homomorphisms from πk(MR
µ ) to Z. Note that τ is a double covering,

so that πk−1(MF
µ ) is finite, since πk−1(Sn) is finite. Therefore, this homotopy theoretic

condition is satisfied, and we may conclude the theorem.

Next, we prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Without loss of generality, we may take n ≤ m. By combining

Lemma 4.4.3 and the Von Neumann-Wigner theorem for singular values, we may take

T to be continuously maximized, as the set of such maps are dense. We may also

assume that R is generic, so that R has distinct singular values. It remains to show

that π1(SR) is finite.

For this, let Stm,n denote the Stiefel manifold, consisting of m× n matrices whose

columns are orthogonal (and if m = n, we let Stn,n = SO(n)). We may think of SR as

being the quotient of SO(n)× Stm,n by a finite group action. Specifically, if we let D

denote the diagonal matrix of special singular values of R, then we have a covering

map c : SO(n)× Stm,n → SR given by

c(U, V ) = UDV ⊺.

Because of uniqueness properties of the singular value decomposition, c(U, V ) =

c(U ′, V ′) if and only if there exists a signed permutation matrix P in SO(n) so
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that U ′ = PU and V ′ = PV . From this, it follows that SR is a finite quotient of

SO(n)× Stm,n, so it has finite fundamental group if and only if SO(n)× Stm,n does.

We then note that π1(SO(n)×Stm,n) = π1(SO(n))×π1(Stm,n), and that π1(SO(n)) =

Z2 for n ≥ 3, and that when m,n ≥ 3, π1(Stm,n) is either Z2 or trivial.

We conclude that SR has finite fundamental group, so that the result follows from

Theorem 4.3.1.

Remark 10. Note that there are likely other hidden convexity theorems that can be

obtained about linear images of SR than what was stated in Theorem 4.2.3. However,

it is unclear what applications there are of such theorems, as singularly noncrossing

subspaces are less well studied than noncrossing subspaces.

4.6 Application to orientation finding

The contents of this section were originally proven in [51]. As an application, we will

discuss constrained variants of Wahba’s problem, which was first discussed in [51].

To set up Wahba’s problem, imagine that a satellite in space wants to determine its

relative rotation (with respect to a reference rotation) given the observed direction of

some number of far-away stars (or other objects).

Formally, we are given a set of (unit) vectors v1, . . . , vk ∈ R3, corresponding

to the known directions of the k stars in the reference rotation, and (unit) vectors

u1, . . . , uk ∈ R3, corresponding to the observed directions of the k stars in the satellite’s

frame. Our goal is to find a rotation minimizing the observation error

min
k∑
i=1
∥Xui − vi∥2

2

s.t. X ∈ SO(3)
(4.6.1)

In [57], it was observed that this is equivalent to a linear optimization problem over
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SO(3)

max ⟨
k∑
i=1

uiv
⊺
i , X⟩

s.t. X ∈ SO(3).
(4.6.2)

This problem can be solved using a singular value decomposition (SVD) computation, in

the following sense: The special singular value decomposition of A is a decomposition

A = UΣV ⊺, where Σ is a diagonal matrix with at most one negative entry, and

U, V ∈ SO(n). It is easy to compute the special singular value decomposition of A

given its usual SVD. Then if A ∈ Rn×n has special SVD given by A = UΣV ⊺, then

the maximizer of ⟨A,X⟩ for X ∈ SO(n) is given by V U⊺. For a given matrix A, we

will denote by str(A) the maximum value of ⟨A,X⟩ for X ∈ SO(n).

Now, suppose we are given additional information about the true rotation X∗. We

will incorporate this additional information as hard constraints into Wahba’ problem

to get a constrained optimization problem over SO(3).

For example, we may know that the true rotation X∗ is within some angle, δ, of

another rotation X0 ∈ SO(3). In this case, we would need to solve the problem

max ⟨
k∑
i=1

uiv
⊺
i , X⟩

s.t. ⟨X0, X⟩ ≥ 1 + 2 cos(δ)

X ∈ SO(3).

(4.6.3)

In general, we will consider the constrained version of Wahba’s problem, which for

matrices A,B ∈ Rn×n is given by

max ⟨A, X⟩

s.t. ⟨B,X⟩ ∈ [a, b]

X ∈ SO(n).

(4.6.4)
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The observation that we will make that makes this tractable is that if we let

f : Rn×n → R2 be given by f(X) = (⟨A,X⟩, ⟨B,X⟩), then Theorem 4.2.3 implies that

f(SO(n)) is in fact convex. Then, Equation (4.6.4) is equivalent to

max x

s.t. y ∈ [a, b]

(x, y) ∈ f(SO(n)).

(4.6.5)

We can then solve this convex problem using the ellipsoid algorithm. If C ⊆ Rn

is a compact convex set and x ̸∈ C, then there is a hyperplane that separates x

and C. This separating hyperplane is given by a nonzero vector y ∈ Rn so that

⟨y, x⟩ ≥ max{⟨y, c⟩ : c ∈ C}. A ϵ-weak separation oracle for C is an oracle that on an

input x ∈ Rn, either correctly declares x ∈ C + B∞(0, ϵ), or outputs y ∈ Rn so that y

is a separating hyperplane between x and C. Here, B∞(a, r) is the ball of radius r in

the L∞ norm centered at a. The algorithmic equivalence between weak separation

oracles and approximate optimization over convex sets is outlined in [58].

The ellipsoid algorithm as described in [59] provides the following guarantee for

optimization in R2.

Theorem 4.6.1. Suppose we have access to an ϵ-weak separation oracle for closed

compact C ⊆ R2, we are given a R ∈ R so that C ⊆ B2(0, R) and C includes a ball of

radius at least ϵ. There is an algorithm that optimizes a linear function with unit L2

norm over C within an additive error of ϵ using at most O(log(R
ϵ
)) calls to the weak

separation oracle.

We now describe how the ellipsoid algorithm applies in this setting. Let ∥A∥Tr

denote the sum of the singular values of A.

Theorem 4.6.2. Let n ≥ 3, A, B ∈ Rn×n with ∥A∥Tr = ∥B∥Tr = 1. Here ∥ · ∥Tr is the

trace norm, defined as the sum of the singular values. Let X∗ be the optimal solution
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to (4.6.4). We can compute ⟨A,X∗⟩ and ⟨B,X∗⟩ within an additive error of ϵ in time

O

(
n3 log

(1
ϵ

)2)
.

Here, n3 is the time complexity of computing the SVD of an n× n matrix.

Moreover, we will return α, β ∈ R so that |α|+ |β| = 1 and

⟨αA+ βB,X∗⟩+ ϵ ≥ max{⟨αA+ βB,X⟩ : X ∈ SO(n)}.

Remark 11. Let α, β denote the quantities returned in Theorem 4.6.2. While

Theorem 4.6.2 does not directly return a minimizer of (4.6.4), we believe that any

element of

argmax
X∈SO(n)

⟨αA+ βB,X⟩

should be a good approximation of a true minimizer under mild conditions. Such an

element can be computed from αA+ βB in the time of a single SVD decomposition.

Theorem 4.6.1 implies that to show Theorem 4.6.2, it suffices to provide a weak

separation oracle for the set C = π(SO(n))∩ {x2 ∈ [a, b]}. As the second constraint is

trivial to separate over, we focus on separating over the convex set π(SO(n)).

We denote by f ∗ : R2 → Rn×n the dual map to the map f defined above. It will

be useful to have a subroutine for minimizing h(y) over the unit ℓ1-ball in R2, where

h(y) := str(f ∗(y))− ⟨y, x⟩.

Lemma 4.6.3. Given x ∈ R2 with ∥x∥∞ ≤ 1 + ϵ, we can construct ŷ with ∥ŷ∥1 = 1
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so that

h(ŷ)− ϵ ≤ min
y
{h(y) : ∥y∥1 = 1}

using at most O
(
log

(
1
ϵ

))
evaluations of h and additional computations.

Proof. We note that {y : ∥y∥1 = 1} is a union of 4 line segments, so minimizing h on

this set can be done by minimizing the following 4 univariate functions on [0, 1]:

gσ1σ2(α) = h(σ1α, σ2(1− α)) = str(σ1αA+ σ2(1− α)B)− σ1αx1 − σ2(1− α)x2,

indexed by σ1, σ2 ∈ {±1}. Each of the four functions gσ1σ2 is a one-dimensional convex

function with Lipschitz constant bounded by

∥A∥Tr + ∥B∥Tr + ∥x∥1 ≤ 4 + 2ϵ.

For each σ1σ2 ∈ {±1}, we may use golden section search [60] to find a α̂σ1σ2 ∈ [0, 1]

such that

gσ1σ2(α̂σ1σ2) ≤ min
α∈[0,1]

gσ1σ2(α) + ϵ.

Each application of golden section search requires O
(
log

(
1
ϵ

))
evaluations of gσ1σ2 , or

equivalently, evaluations of h.

Lemma 4.6.4. Let n ≥ 3 and A,B ∈ Rn×n with ∥A∥Tr = ∥B∥Tr = 1. There is a

weak separation oracle for the set f(SO(n)) that runs in time O(n3 log(1
ϵ
)).

Proof. Suppose we are given A,B ∈ Rn×n and x ∈ R2. If ∥x∥∞ > 1 + ϵ, then in fact,

x ̸∈ f(SO(n)) + B∞(0, ϵ) as, by Holder’s inequality,

X ∈ SO(n) =⇒ max{|⟨A,X⟩|, |⟨B,X⟩|} ≤ ∥X∥op max{∥A∥Tr , ∥B∥Tr} ≤ 1,
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where the last step was by our assumption ∥A∥Tr = ∥B∥Tr = 1. Therefore, in this

case, we may immediately terminate with one of (±1, 0) or (0,±1) as a separating

hyperplane. For the remainder, we assume that ∥x∥∞ ≤ 1 + ϵ.

A nonzero vector y ∈ R2 defines a separating hyperplane between x and f(SO(n))

if and only if

⟨y, x⟩ ≥ max
X∈SO(n)

⟨y, f(X)⟩.

Recalling the definition of str(·), the expression on the right can be written as

max
X∈SO(n)

⟨y, f(X)⟩ = max
X∈SO(n)

⟨f ∗(y), X⟩ = str(f ∗(y)).

Thus, a nonzero y ∈ R2 defines a separating hyperplane if and only if h(y) ≤ 0. Note

that we can compute h(y) for a given y using a single SVD. As h is 1-homogeneous,

such a y exists if and only if one exists with ∥y∥1 = 1.

Now, we apply Lemma 4.6.3 to compute ŷ approximately minimizing h(y) on the

unit ℓ1 ball.

If h(ŷ) ≤ 0, then we may output ŷ as a separating hyperplane. For the remainder

of the proof, suppose h(ŷ) > 0. By Lemma 4.6.3 and 1-homogeneity, h(y) > −ϵ

for all y ∈ B1(0, 1). We claim that x ∈ f(SO(n)) + B∞(0, ϵ). If, to the contrary,

x ̸∈ f(SO(n)) + B∞(0, ϵ), then by the separating hyperplane theorem, there would be

some y so that

⟨y, x⟩ ≥ max{⟨y, c+ δ⟩ : c ∈ f(SO(n)), δ ∈ B∞(0, ϵ)}

= max{⟨y, c⟩ : c ∈ f(SO(n))}+ ϵ∥y∥1.

In particular, there would be some y with ∥y∥1 = 1 such that

h(y) = str(f ∗(y))− ⟨y, x⟩ ≤ −ϵ,
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which is a contradiction.
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CHAPTER 5

LONG STEP GRADIENT DESCENT

5.1 Introduction to long step gradient descent

This work was originally put forward in [61], and has since been modified with the

coauthors Ben Grimmer and Alex Wang.

We will consider minimizing a L-smooth convex function f : Rn → R via gradient

descent. A function is L-smooth if it is continuously differentiable, and its gradient is

L-Lipschitz. We will specifically consider iterations of the following form:

xi+1 = xi −
hi
L
∇f(xi) (5.1.1)

with (normalized) stepsizes hi > 0 starting from some x0 ∈ Rn. We assume a minimizer

x⋆ of f exists.

Our main goal is to show that there exists a sequence hi ∈ RT achieving the

following rate (which we will state loosely here, and more precisely in Theorem 5.2.1):

f(xT )− f(x⋆) = O
( 1
T 1.27

)
, (5.1.2)

where the O hides constants related to the starting point x0.

The main tool that we will be using for this is a collection of quadratic inequalities

that characterizes first order information associated to a smooth convex function

at a finite set of points. Formally, we will note the following basic inequalities for

smooth convex functions: if f is L-smooth, and ∥ · ∥ denotes the ℓ2 norm, then for
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any x, y ∈ Rn,

f(x)− f(y) ≥ ⟨∇f(y), x− y⟩+ 1
2L∥∇f(x)−∇f(y)∥2

The idea of systematically using these inequalities to analyze the convergence of

gradient based methods was is proposed in [62]. In fact, a strong converse to this set

of inequalities was proven in [63]:

Theorem 5.1.1. Let x1, . . . , xm ∈ Rn, let f1, . . . , fm ∈ R and let g1, . . . , gm ∈ Rn.

Then, there is an L-smooth convex function f so that f(xi) = fi and ∇f(xi) = gi for

all i ∈ [m] if and only if for each i, j ∈ [m],

fi − fj ≥ ⟨gj, xi − xj⟩+ 1
2L∥gi − gj∥

2.

The main idea we will be using to prove our convergence rates is taking nonnegative

combinations of these inequalities. In the rest of this section, we will note prior work

on the subject and then give our step size sequence.

5.1.1 Prior work

When utilizing constant stepsizes, until recently, the best known guarantee was the

textbook result [64] that fixing hi = 1 ensures f(xT ) − f(x⋆) ≤ LD2/2T . This was

improved by the tight convergence theory of Teboulle and Vaisbourd [65], showing a

rate of

f(xT )− f(x⋆) ≤
LD2

4T

when the stepsizes hi = 1. Utilizing nonconstant stepsizes monotonically converging up

to 2, they further showed a rate approaching LD2/8T . These coefficient improvements

were first conjectured by [63].

By utilizing nonconstant periodically long stepsizes, Grimmer [66] showed improved
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convergence rates are possible outside the classic range of stepsizes (0, 2). We refer

to steps with hi > 2 as long steps since they go beyond the classic regime hi ∈ (0, 2)

where descent on the objective value is guaranteed. Their strongest result, resulting

from a computer-aided semidefinite programming proof technique, showed repeating a

cycle of 127 stepsizes h0, . . . , h126 ranging from 1.4 to 370.0 gives a rate of

min
i≤T

f(xi)− f(x⋆) ≤
LD2

5.83463T +O(1/T 2).

Note, bounding mini≤T f(xi)−f(x⋆) (or a similar quantity) is natural for such long step

methods as monotone decrease of the objective is no longer ensured. By considering

longer and more complex patterns, increasing gains in the coefficient appear to follow.

However, the reliance on numerically solving semidefinite programs with size depending

on the pattern length limited this prior work’s ability to explore and prove continued

improvements in convergence rates. Grimmer conjectured at least a O(1/T log(T ))

rate would follow if one could design and analyze (algebraically) cyclic patterns of

generic length.

Das Gupta et. al. [67] produced numerically globally optimal stepsize selections

via a branch-and-bound procedure for gradient descent with a fixed number of steps

T ∈ [0, 25]. By fitting to asymptotics of their numerical guarantees [67, Figure 2],

they conjectured a O(1/T 1.178) rate may be possible and may be best possible. Our

work leaves open the gap between our O(1/T 1.0564) rate and their conjecture, as well

as the gap between their conjecture and the known lower bound for general gradient

methods of O(1/T 2) [68].

At the same time that this work was released, Altschuler and Parrilo [69, 70] also

showed an accelerated rate through the inclusion of long steps. In their second work

in this series, they showed an improved convergence rate of roughly 1
2T 1.2716 .

Stronger guarantees for gradient descent with variable stepsizes are known in
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specialized settings, like µ-strongly convex minimization. Classically, gradient descent

with constant stepsizes hi = 1/L produces an ϵ-minimizer in O(κ log(1/ϵ)) iterations,

where κ = L/µ.

In the further specialized case of minimizing strongly convex quadratics, the

optimal stepsizes were given by [71], which attain the optimal O(κ1/2 log(1/ϵ)) rate.

For nonconvex optimization, exact worst-case guarantees for gradient descent with

short steps hk ∈ (0, 1] were given by Abbaszadehpeivasti et al. [72].

5.1.2 The Proposed Stepsizes

In this subsection, we will define the step sizes which we will prove achieve accelerated

convergence for smooth convex functions. Before we do this, we will need some

preliminary definitions.

A quantity which appears prominently in our work (as well as that in [70]) is the

silver ratio, defined as ρ = 1+
√

2. We will also define the numbers βi = 1+(1+
√

2)i−1.

For i ∈ N, we let ν(i) be the largest k so that 2k divides i with the convention

that ν(0) =∞. This is sometimes also known as the 2-adic valuation. For ℓ ≥ 0, let

π(ℓ) ∈ R2ℓ−1 be the vector where π(ℓ)
i = βν(i), with the convention that π(0) = [], the

empty sequence. We list the first few vectors π(ℓ) for concreteness:

π(−1) = ∅ is the empty vector,

π(1) = [β0],

π(2) = [β0, β1, β0], and

π(3) = [β0, β1, β0, β2, β0, β1, β0].

This was shown to be a good sequence of step sizes for gradient descent in [70]. The

step sizes we will consider are somewhat more complicated.

We will also need to define two sequences, αi and µi in a mutually recursive fashion.
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For i ≥ 0, define

µi := 2
i−1∑
ℓ=0

αℓ +
i−2∑
ℓ=0

2(2i−ℓ−1 − 1)βℓ + 1.

Here, we say that the empty sum is 0, so that µ0 = 1, and µ1 = 2α0 + 1. In general,

µi only depends on αℓ for ℓ ≤ i− 1.

We may then inductively define

αi := the unique root larger than 1 of

qi(x) := 2(x− 1)2 + µi(x− 1)− ρiµi. (5.1.3)

Note that qi(1) = −ρiµi < 0, so that qi has a unique root larger than 1 and αi is

well-defined.

We will finally define our sequence h(k) ∈ R2k−1 inductively as follows: h(1) = [3
2 ],

and for k > 0,

h(k) = [π(k−1), αk−1, h
(k−1)].

Here, if v1, . . . , vk are vectors or numbers, then the notation [v1, . . . , vk] denotes the

concatenation of these vectors. We also use the convention that h(i) is 0-indexed.

As a historical note, the original version of this work in [61] considered a somewhat

different sequence, which was discovered after extensive computer search. This original

sequence satisfied a condition called ‘straightforwardness’, originally proposed by [66],

which streamlined this computer search. Since then, this original sequence has been

truncated and a neater proof of its convergence properties have been discovered, which

we will give here.
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Following this construction, the first four sequences are, for example, given by

h(1) =
[3
2

]
,

h(2) =
[√

2, 1 +
√

2, 3
2

]
,

h(3) =
[√

2, 2,
√

2,−1
2 −
√

2 + 3
√

5
2 +

√
10,
√

2, 1 +
√

2, 3
2

]
.

In Section 5.3, we will give algebraic equations relating these various constants

and sequences. We will also provide bounds on how the quantities αk and µk grow

asymptotically.

Lemma 5.1.2. For all k ≥ 1, it holds that

βk ≤ αk ≤ βk+1,

2(1 +
√

2)k ≤ µk.

From this, we see these building block patterns not only have exponentially large

steps occur periodically, but also have exponentially large average stepsizes.

5.2 Proof of convergence rate

To state our convergence theorem, it will be helpful to have defined yet another

sequence. We will let c(k) ∈ R2k be defined as follows: c1 =
(

1 1
)

and for k > 1,

c(k) = [ 1
√
µk
π(k−1),

1
√
µk
βk, ck−1].

We will show the following:

Theorem 5.2.1. Fix f : Rn → R to be a 1-smooth convex function with a global

minimizer x∗, and let x0 ∈ Rn. Fix some k ≥ 1, and let xi+1 = xi − h
(k)
i ∇f(xi)

for i = 0, . . . , 2k − 2. Also define a sequence yi as follows: y0 = x0 and yi+1 =
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yi −
√
µkc

(k)
i ∇f(xi). With these definitions, we have that

f(x2k−1)− f(x∗) ≤
∥x0 − x∗∥2 − ∥y2k−1 − x∗∥2

2µk
.

Remark 12. The minimizer x∗ can be chosen arbitrarily amongst all minimizers; we

only use the fact that ∇f(x∗) = 0. In particular, we may choose the x∗ minimizing

∥x0 − x∗∥2 amongst all minimizers.

Remark 13. The sequence yi is not quite the result of a gradient descent procedure

with different step sizes, as the updates are made using the gradients of f at xi and

not yi. Nevertheless, it is interesting that the gap between f(x2k−1)− f(x∗) improves if

∥y2k−1 − x∗∥2 is large. In particular, it is guaranteed that either f(x2k−1) is especially

close to f(x∗), or y2k−1 is close to x∗ in Euclidean distance.

Because our sequences have length 2n, if we let T be the number of steps in this

sequence, then µk = Θ(T log2(1+
√

2)), where log2(1 +
√

2) = 1.27.

As we have stated, we will prove this by combining the basic inequalities on the

values of 1-smooth convex functions.

Fix some T . For each i ∈ {0, . . . , T}, we will let xi, gi ∈ Rn and fi ∈ R be

indeterminants. We will define quadratic polynomials for i ̸= j ∈ {0, . . . , T},

Qij = fi − fj − ⟨gj, xi − xj⟩ −
1
2∥gi − gj∥

2 ∈ R[fi, fj, gi, gj, xi, xj].

We will also define quadratic polynomials

Qi∗ = fi − f∗ −
1
2∥gi∥

2, and

Q∗i = f∗ − fi − ⟨gi, x∗ − xi⟩ −
1
2∥gi∥

2 ∈ R[f∗, fi, gi, x∗, xi].

Now, if f is a 1-smooth convex function, x0, . . . , xT ∈ Rn, and gi = ∇f(xi) for each
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i ∈ {0, . . . , T}, then inputting these values into some Qij will result in nonnegative

numbers. If, moreover, we set xi = x0 −
∑i−1
i=0 higi for some constant h ∈ RT−1, as

is the case when the xi are the iterates arising from gradient descent, then Qij is a

polynomial in just f and g variables for i ̸= j ∈ {0, . . . , n}, while Q∗i and Qi∗ are

polynomials in the f variables, g variables and x∗ − x0.

If we set xi = x0 −
∑i−1
i=0 higi for some fixed h ∈ RT−1, then we may then de-

fine the conical hull of these polynomials to be the set of all nonnegative linear

combinations of the Qij for i, j ∈ {∗, 0, . . . , T} (thought of as being polynomials in

R[f1, . . . , fn, g1, . . . , gn, x∗ − x0]). We will denote this conical hull by Q(h).

In this context, we will define yi = x0−
∑i−1
j=0
√
µkc

(k)
i gi. Our main theorem can be

shown to be equivalent to the claim that

∥x∗ − x0∥2 − ∥y2k−1 − x∗∥2

2µk
+ f∗ − f2k ∈ Q(h(k)).

To prove this, we will need to first construct an auxiliary polynomial in Q(h(k)).

dk = 1
√
µk

2k−2∑
i=0

c
(k)
i (fi − f2k−1)

+ 1
√
µk

2k−1∑
i=0
⟨c(k)
i gi, yi − xi⟩

+
2k−1∑
i=0

 c
(k)
i

2√µk
− (c(k)

i )2

2

 ∥gi∥2.

Lemma 5.2.2. For any k ≥ 1, dk ∈ Q(h(k)).

Before we prove Lemma 5.2.2, we will show how we can use it to prove Theo-

rem 5.2.1.
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Proof of Theorem 5.2.1. Consider

ak =
2k−1∑
i=0

c
(k)
i Q∗i

=
2k−1∑
i=0

c
(k)
i (f∗ − fi)

−
2k−1∑
i=0

c
(k)
i ⟨gi, xi − x∗⟩

− 1
2

2k−1∑
i=0

c
(k)
i ∥gi∥2

From this representation, it is clear that ak ∈ Q(h(k)), since the entries of c(k) are all

nonnegative. We also have from Lemma 5.3.4 that
(∑2k−1

i=0 c
(k)
i

)
= √µk.

Consider √µkak + µkdk, which is

µk(f∗ − f2k−1)−
2k−1∑
i=0
⟨√µkc(k)

i gi, yi − x∗⟩ −
2k−1∑
i=0

(µk)(c(k)
i )2

2 ∥gi∥2 ≥ 0.

Now, note that √µkc(k)
i gi = yi+1 − yi, so that

2k−1∑
i=0
⟨√µkc(k)

i gi, yi − x∗⟩+ 1
2

2k−1∑
i=0

(√µkc(k)
i )2∥gi∥2 =

= 1
2

2k−1∑
i=0

(2⟨yi+1 − yi, yi − x∗⟩+ ∥yi+1 − yi∥2)

= 1
2

2k−1∑
i=0

(⟨yi+1 − yi, 2yi − 2x∗⟩+ ⟨yi+1 − yi, yi+1 − yi⟩)

= 1
2

2k−1∑
i=0
⟨yi+1 − yi, yi+1 + yi − 2x∗⟩

= 1
2

2k−1∑
i=0

(∥yi+1 − x∗∥2 − ∥yi − x∗∥2)

= ∥y0 − x∗∥2 − ∥y2k−1 − x∗∥2

2

= ∥x0 − x∗∥2 − ∥y2k−1 − x∗∥2

2
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We conclude that for any 1-smooth convex function f , with minimizer x∗,

f(x2k−1)− f(x∗) ≤
∥x0 − x∗∥2 − ∥y2k−1 − x∗∥2

2µk
.

Clearly, this implies Theorem 5.2.1.

The remainder of this section is devoted to the proof of Lemma 5.2.2

5.2.1 Proof of Lemma 5.2.2

In order to prove Lemma 5.2.2, we will need to define an auxiliary polynomial.

bk = 1
ρ

2k−2∑
i=0

π
(k)
i (fi − f2k−1)−

1
2ρ

2k−2∑
i=0

π
(k)
i (π(k)

i − 1)∥gi∥2 − ρk−1

2 (ρk − 1)∥g2k−1∥2.

Lemma 5.2.3. For any k ≥ 1, bk ∈ Q(π(k)).

Proof. We will prove this using induction. For notational convenience, we will let

T = 2k − 1, the length of π(k) and note that 2T + 1 = 2k+1 − 1 is the length of π(k+1).

Firstly, as a base case, we have that

b1 = 1
ρ
π

(1)
0 (f0 − f1)

− 1
2ρπ

(1)
0 (π(1)

0 − 1)∥g0∥2 − 1
2(ρ− 1)∥g1∥2

=
√

2
ρ
f0 −

√
2
ρ
f1 −

√
2

2ρ2∥g0∥2 − 1√
2
∥g1∥2

= (f0 − f1 − ⟨g1, x0 − x1⟩ −
1
2∥g1 − g0∥2)

+ 1
ρ

(f1 − f0 − ⟨g0, x1 − x0⟩ −
1
2∥g0 − g1∥2)

= Q0,1 + 1
ρ
Q1,0.

It is important to note that because the first and last T steps in π(k+1) are the

same as π(k), if p ∈ Q(π(k)), then this implies that p ∈ Q(π(k+1)) and that the shift of
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p, defined by adding 2k to the indices of all variables in p, is in Q(π(k+1)). We will

denote this shift by Skp.

Next, for k > 1, we claim that

bk+1 = bk + ρ2Skbk + ∆,

where

∆ =
2T∑

i=T+1
π

(k+1)
i (QT i +Q2T+1 i) +QT 2T+1 + ρk−1Q2T+1 T .

Note that bk + ρ2Skbk ∈ Q(π(k+1)) by induction and our remarks about shifting.

Therefore, if this equality holds, then bk+1 ∈ Q(π(k+1)), and the inductive step holds,

and so does the conclusion of the theorem.

We expand as follows, using the observation that π(k)
i = π

(k+1)
i = π

(k+1)
i+2k for

i = {0, . . . , T − 1}:

bk + ρ2Skbk = 1
ρ

T−1∑
i=0

π
(k+1)
i (fi − fT )− 1

2ρ

T−1∑
i=0

π
(k+1)
i (π(k+1)

i − 1)∥gi∥2 − ρk−1

2 (ρk − 1)∥gT∥2

+ ρ
2T∑

i=T+1
π

(k+1)
i (fi − f2T+1)−

ρ

2

2T∑
i=T+1

π
(k+1)
i (π(k+1)

i − 1)∥gi∥2

− ρk+1

2 (ρk − 1)∥g2T+1∥2,

and

∆ =
2T∑

i=T+1
π

(k+1)
i (fT + f2T+1 − 2fi)

−
2T∑

i=T+1
π

(k+1)
i (⟨gi, xT + x2T+1 − 2xi⟩+ 1

2∥gT − gi∥
2 + 1

2∥g2T+1 − gi∥2)

+ (fT − f2T+1 − ⟨g2T+1, xT − x2T+1⟩ −
1
2∥gT − g2T+1∥2)

+ ρk−1(f2T+1 − fT − ⟨gT , x2T+1 − xT ⟩ −
1
2∥g2T+1 − gT∥2)
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We note the following about this expression: xT + x2T+1 − 2xi = ∑i−1
j=T π

(k+1)
j gi −∑2T

j=i π
(k+1)
j gi, so

2T∑
i=T+1

π
(k+1)
i ⟨gi, xT + x2T+1 − 2xi⟩ =

2T∑
i=T+1

i−1∑
j=T

π
(k+1)
i π

(k+1)
j ⟨gi, gj⟩

−
2T∑

i=T+1

2T∑
j=i

π
(k+1)
i π

(k+1)
j ⟨gi, gj⟩

= ⟨
2T∑

i=T+1
π

(k+1)
i gi, π

(k+1)
T gT ⟩ −

2T∑
i=T+1

(π(k+1)
i )2∥gi∥2.

We also note that

2T∑
i=T+1

π
(k+1)
i (∥gi − gT∥2 + ∥g2T+1 − gi∥2) =

2T∑
i=T+1

π
(k+1)
i (2∥gi∥2 + ∥gT∥2 + ∥g2T+1∥2)

− 2⟨
2T∑

i=T+1
π

(k+1)
i gi, gT + g2T+1⟩.

Note that ∑2T+1
i=T π

(k)
i gi = xT − x2T+1. Combining and noting that the expressions of
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the form ⟨gi, x2k−1 − x2k−1−1⟩ cancel, yields that

∆ =
2T∑

i=T+1
π

(k+1)
i (fT + f2T+1 − 2fi)

− ⟨xT − x2T+1 − π(k+1)
T gT , π

(k+1)
T gT ⟩+

2T∑
i=T+1

(π(k+1)
i )2∥gi∥2

− 1
2

2T∑
i=T+1

π
(k+1)
i (2∥gi∥2 + ∥gT∥2 + ∥g2T+1∥2)

+ ⟨xT − x2T+1 − π(k+1)
T gT , gT + g2T+1⟩

+ (fT − f2T+1 − ⟨g2T+1, xT − x2T+1⟩ −
1
2∥gT − g2T+1∥2)

+ ρk−1(f2T+1 − fT − ⟨gT , x2T+1 − xT ⟩ −
1
2∥g2T+1 − gT∥2)

=
 2T∑
i=T+1

π
(k+1)
i + 1− ρk−1

 fT +
 2T∑
i=T+1

π
(k+1)
i − 1 + ρk−1

 f2T+1

− 2
2T∑

i=T+1
π

(k+1)
i fi −

1
2

1 + ρk−1 +
2T∑

i=T+1
π

(k+1)
i + 2π(k+1)

T (π(k+1)
T − 1)

 ∥gT∥2

− 1
2

1 + ρk−1 +
2T∑

i=T+1
π

(k+1)
i

 ∥g2T+1∥2 +
2T∑

i=T+1

(
π

(k+1)
i (π(k+1)

i − 1)
)
∥gi∥2.

From Lemma 5.3.4, and the fact that π(k+1)
i+T+1 = π

(k)
i for i ∈ {0, . . . , T} makes this

expression equal to

∆ =
(
ρk − ρk−1

)
(fT − f2T+1)− 2

2T∑
i=T+1

π
(k+1)
i (fi − f2T+1)

− 1
2
(
ρk−1 + ρk + 2π(k+1)

T (π(k+1)
T − 1)

)
∥gT∥2

+
2T∑

i=T+1

(
π

(k+1)
i (π(k+1)

i − 1)
)
∥gi∥2 − 1

2
(
ρk + ρk−1

)
∥g2T+1∥2.
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Finally, we combine, apply the fact that ρ− 2 = 1
ρ
, and see that

bk+1 = bk + ρ2Skbk + ∆ = 1
ρ

T−1∑
i=0

π
(k+1)
i (fi − fT ) +

(
ρk − ρk−1

)
(fT − f2T+1)

− 1
2ρ

T−1∑
i=0

π
(k+1)
i (π(k+1)

i − 1)∥gi∥2

−
(
ρk−1

2 (ρk − 1) + 1
2(ρk−1 + ρk) + π

(k+1)
T (π(k+1)

T − 1)
)
∥gT∥2

+ (ρ− 2)
2T∑

i=T+1
π

(k+1)
i (fi − f2T+1)

−
2T∑

i=T+1

(
ρ

2π
(k+1)
i (π(k+1)

i − 1)−
(
π

(k+1)
i (π(k+1)

i − 1)
))
∥gi∥2

−
(
ρk+1

2 (ρk − 1) + 1
2
(
ρk + ρk−1

))
∥g2T+1∥2

= 1
ρ

2T∑
i=0

π
(k+1)
i (fi − fT )− 1

2ρ

2T∑
i=0

π
(k)
i (π(k)

i − 1)∥gi∥2

− ρk

2 (ρk+1 − 1)∥g2T+1∥2

= bk+1.

Here, we have noted that
(
ρk − ρk−1

)
(fT − f2T+1) = 1

ρ

∑T
i=0 π

(k+1)
i (fT − f2T+1), and

applied Lemma 5.3.3.

Next, we will prove our main result of this subsection.

Proof of Lemma 5.2.2. We will show this by induction. First note that µ1 = 4,

c
(1)
0 = c

(1)
1 = 1, so that y1 = x0 − 2g0.

d1 = 1
2(f0 − f1)−

1
4⟨g1, g0⟩ −

1
4∥g0∥2 − 1

4∥g1∥2.

We recognize this as 1
2Q0,1 ∈ Q(h(1)).

From here out, we let T = 2k − 1, the length of h(k), so that 2T + 1 = 2k+1 − 1 is

the length of h(k+1).
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One important note is that because the last T step sizes in the h(k+1) sequence

are the same as h(k), we once again have that if p ∈ Q(h(k)), then Skp ∈ Q(h(k+1)),

where Sk is the shift operator that adds 2k to all indices of variables. Also, because

the first 2k − 1 steps in the h(k+1) are the same as π(k), we have that if p ∈ Q(π(k)),

then p ∈ Q(h(k+1)).

We then claim that

dk+1 = Skdk + ρ

µk+1
bk +

(
1
√
µk
− 1
√
µk+1

)
∆k,

where

∆k =
2T+1∑
i=T+1

c
(k)
i QT i.

By the inductive hypothesis, Lemma 5.2.3, and the fact that ∆ is clearly in Q(h(k)),

the conclusion will follow. This finishes the inductive step, and thus implies the

conclusion of the theorem.

To apply the shift operator, we will need to expand the definition of yi in dk−1:

dk = 1
√
µk

T−1∑
i=0

c
(k)
i (fi − fT )

+
T∑
i=0
⟨c(k)
i gi,

i−1∑
j=0

c(k)
j −

h
(k)
j√
µk

 gj⟩
+

T∑
i=0

 c
(k)
i

2√µk
− (c(k)

i )2

2

 ∥gi∥2.
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Shifting, we obtain

Skdk = 1
√
µk

2T∑
i=T+1

c
(k+1)
i (fi − fT )

+
2T+1∑
i=T+1

⟨c(k+1)
i gi,

i−1∑
j=T+1

c(k+1)
j −

h
(k+1)
j√
µk

 gj⟩
+

2T+1∑
i=T+1

c(k+1)
i

2√µk
− (c(k+1)

i )2

2

 ∥gi∥2.

Here, it is important to note that the last 2k entries of c(k+1) are the same as c(k) , so

we may substitute c(k)
i for c(k−1)

i−2k−1 for i ∈ [2k−1, 2k − 1]. A similar situation holds for

similarly for hk+1.

We will also recall

ρ

µk+1
bk = 1

µk+1

T−1∑
i=0

π
(k)
i (fi − fT )− 1

2

T−1∑
i=0

π
(k)
i (π(k)

i − 1)
µk+1

∥gi∥2

− ρk(ρk − 1)
2µk+1

∥gT∥2

= 1
√
µk+1

T−1∑
i=0

c
(k+1)
i (fi − fT )− 1

2

T−1∑
i=0

(c(k+1)
i )2 − c

(k+1)
i√
µk+1

 ∥gi∥2

− ρk(ρk − 1)
2µk+1

∥gT∥2

Here, we make use of the facts that c(k+1)
i = π

(k)
i√
µk

if i ∈ {0, . . . , 2k−1 − 2}.

We next expand ∆k:

∆k =
2T+1∑
i=T+1

c
(k+1)
i (fT − fi − ⟨gi, xi − xT ⟩)

− 1
2

2T+1∑
i=T+1

c
(k+1)
i ∥gT − gi∥2
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We note that xT − xi = ∑i−1
j=T h

(k+1)
j gj, so that

2T+1∑
i=T+1

c
(k+1)
i ⟨gi, xi − xT ⟩ = −

2T+1∑
i=T+1

c
(k+1)
i ⟨gi,

i−1∑
j=T

h
(k+1)
j gj⟩

= −
2T+1∑
i=T+1

i−1∑
j=T
⟨c(k+1)
i gi, h

(k+1)
j gj⟩.

We also note that, since ∑2T+1
i=T+1 c

(k+1)
i = ∑T

i=0 c
(k)
i = √µk by Lemma 5.3.4,

2T+1∑
i=T+1

c
(k+1)
i (∥gT∥2 − 2⟨gT , gi⟩+ ∥gi∥2) =

√
µk∥gT∥2 − 2⟨gT ,

2T+1∑
i=T+1

c
(k+1)
i gi⟩+

2T+1∑
i=T+1

c
(k)
i ∥gi∥2.

Finally, we will note that c(k+1)
j = π

(k)
j√
µk+1

= h
(k)
j√
µk+1

when j < T , and so in particular,

we can write

0 =
2T+1∑
i=0
⟨c(k)
i gi,

min i−1,T−1∑
j=0

c(k)
j −

h
(k)
j√
µk

⟩.
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Combining, we have that Skdk + ρ
µk+1

bk +
(

1√
µk
− 1√

µk+1

)
∆k is

1
√
µk

2T∑
i=T+1

c
(k+1)
i (fi − fT )

+
2T+1∑
i=T+1

⟨c(k+1)
i gi,

i−1∑
j=T+1

c(k+1)
j −

h
(k+1)
j√
µk

 gj⟩
+

2T+1∑
i=T+1

c(k+1)
i

2√µk
− (c(k+1)

i )2

2

 ∥gi∥2

+ 1
√
µk+1

T−1∑
i=0

c
(k+1)
i (fi − fT )− 1

2

T−1∑
i=0

(c(k+1)
i )2 − c

(k+1)
i√
µk+1

 ∥gi∥2

− ρk(ρk − 1)
2(µk+1)

∥gT∥2

+
(

1
√
µk
− 1
√
µk+1

) 2T+1∑
i=T+1

c
(k+1)
i (fT − fi)

+
(

1
√
µk
− 1
√
µk+1

) 2T+1∑
i=T+1

i−1∑
j=T
⟨c(k+1)
i gi, h

(k+1)
j gj⟩

− 1
2

(
1
√
µk
− 1
√
µk+1

)√µk∥gT∥2 − 2⟨gT ,
2T+1∑
i=T+1

c
(k)
i gi⟩


− 1

2

(
1
√
µk
− 1
√
µk+1

) 2T+1∑
i=T+1

c
(k+1)
i ∥gi∥2.

Carefully combining terms shows that this expression is dk+1, as desired.

5.3 Equations and bounds related to constants

Lemma 5.3.1. For any k,
2k−1∑
i=0

π
(k)
i = ρk − 1.

Proof. In π(k), there are 2k−1 entries which are equal to β0, 2k−2 entries which are

equal to β1 and so on, so that

2k−1∑
i=0

π
(k)
i =

k−1∑
i=0

2k−i−1βi =
k∑
i=0

2k−i(ρi−1 + 1).
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This sum is a geometric series, which can be easily computed.

Lemma 5.3.2. For any k ≥ 1,

µk = µk−1 + 2(αk−1 + ρk − 1)

Proof. It follows quickly from the definition that

µk − µk−1 = 2αk−1 + 2ρk − 2.

Lemma 5.3.3. For any k ≥ 1,

2ρk−1 +√µk−1µk = µk.

Proof. This is equivalent to

µk−1µk = (µk − 2ρk−1)2.

We note that it is clear from the definition of µk that µk−1 + 2(αk + ρk − 1) = µk.

Applying this identity results in

µk−1(µk−1 + 2(αk + ρk − 1)) = (µk−1 + 2(αk − 1))2.

Rearranging this identity yields

0 = 2((αk − 1)2 + µk−1(a− 1)− ρkµk−1).

This is the defining equation for αk.
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Lemma 5.3.4. For any k ≥ 1,

2k−1∑
i=0

c
(k)
i = √µk

Proof. We will show this by induction. As a base case, note that ∑2k−1
i=0 c

(k)
i = √µ0 = 1.

For the inductive step, note that

2k+1−1∑
i=0

c
(k+1)
i =

∑2k−1
i=0 π

(k)
i + βk+1√
µk+1

+
2k+1−1∑
i=2k

c
(k)
i .

We have that ∑2k−1
i=0 π

(k)
i = ρk − 1, βk+1 = ρk + 1, and ∑2k+1−1

i=2k c
(k)
i = √µk, so that

2k+1−1∑
i=0

c
(k+1)
i = 2ρk

√
µk+1

+√µk

This is equivalent to Lemma 5.3.3

Finally, we prove the asymptotics stated in Lemma 5.1.2.

Proof of Lemma 5.1.2. First we verify αk ≤ βk+1. The defining equation of αk is that

αk is the unique root larger than 1 of qk. It is clear that βk+1 ≥ 1, thus to show

αk ≤ βk+1 suffices to show that qk(βk+1) > 0. We compute

qk(βk+1) = 2(βk+1 − 1)2 + µk(βk+1 − 1)− (βk+1 − 1)µk = 2(βk+1 − 1)2 > 0.

We next note that

µk ≥
k−2∑
ℓ=0

2(2k−ℓ−1 − 1)βℓ =
√

2(ρk − 1)− 2k

Next, we note that βk ≤ αk, which follows because
√

2 = β1 ≤ α1 = 3
2 , and for
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k ≥ 2,

qk(βk) = (βk − 1)2 + µk(βk − 1)− ρkµk

= ρ2(k−1) −
√

2ρk−1µk

≤ ρ(k−1)((1− 2ρ)ρk−1 + 2 + 2
√

2k)

which is negative.

This leads to the improved lower bound that

µk ≥ 2
2k−1∑
i=0

π(k) = 2(ρk − 1).
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[55] K. Itō, Encyclopedic dictionary of mathematics. MIT press, 1993, vol. 1.

[56] S. Friedland and R. Loewy, “Subspaces of symmetric matrices containing matri-
ces with a multiple first eigenvalue,” Pacific Journal of Mathematics, vol. 62,
no. 2, pp. 389–399, 1976.

[57] G. Wahba, “A least squares estimate of satellite attitude,” SIAM Rev., vol. 7,
no. 3, pp. 409–409, 1965.

[58] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinato-
rial optimization. Springer Science & Business Media, 2012, vol. 2.

[59] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its con-
sequences in combinatorial optimization,” Combinatorica, vol. 1, pp. 169–197,
1981.

[60] J. Kiefer, “Sequential minimax search for a maximum,” vol. 4, no. 3, pp. 502–506,
1953.

[61] B. Grimmer, K. Shu, and A. L. Wang, “Accelerated gradient descent via long
steps,” arXiv preprint arXiv:2309.09961, 2023.

[62] Y. Drori and M. Teboulle, “Performance of first-order methods for smooth
convex minimization: A novel approach,” Mathematical Programming, vol. 145,
pp. 451–482, 2012.

[63] A. Taylor, J. Hendrickx, and F. Glineur, “Smooth strongly convex interpola-
tion and exact worst-case performance of first-order methods,” Mathematical
Programming, vol. 161, pp. 307–345, 2017.

[64] D. P. Bertsekas, “Convex optimization algorithms,” 2015.

[65] M. Teboulle and Y. Vaisbourd, “An elementary approach to tight worst case
complexity analysis of gradient based methods,” Math. Program., vol. 201,
no. 1–2, pp. 63–96, 2022.

[66] B. Grimmer, “Provably Faster Gradient Descent via Long Steps,” arxiv:2307.06324,
2023.

113



[67] S. D. Gupta, B. P. V. Parys, and E. Ryu, “Branch-and-bound performance
estimation programming: A unified methodology for constructing optimal opti-
mization methods,” Mathematical Programming, 2023.

[68] Y. E. Nesterov, Introductory Lectures on Convex Optimization - A Basic Course
(Applied Optimization). Springer, 2004, vol. 87, isbn: 978-1-4613-4691-3.

[69] J. M. Altschuler and P. A. Parrilo, Acceleration by stepsize hedging i: Multi-step
descent and the silver stepsize schedule, 2023. arXiv: 2309.07879 [math.OC].

[70] J. M. Altschuler and P. A. Parrilo, “Acceleration by stepsize hedging ii: Silver step-
size schedule for smooth convex optimization,” arXiv preprint arXiv:2309.16530,
2023.

[71] D. Young, “On richardson’s method for solving linear systems with positive defi-
nite matrices,” Journal of Mathematics and Physics, vol. 32, no. 1-4, pp. 243–255,
1953. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm1953321243.

[72] H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani, “The exact worst-case
convergence rate of the gradient method with fixed step lengths for l-smooth
functions,” Optimization Letters, vol. 16, pp. 1649–1661, 2021.

114

https://arxiv.org/abs/2309.07879
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm1953321243

	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Summary
	1 | Introduction
	High level overview
	Preliminary notions

	2 | Hyperbolic polynomials
	Preliminary notions
	Symmetric hyperbolic polynomials
	Linear principal minor polynomials

	3 | Sparsity in semidefinite programming
	Preliminary notions
	Approximate positive semidefinite completions
	Connections to hyperbolic polynomials

	4 | Hidden convexity and algebraic topology
	History and preliminary notions
	Summary of results
	Continuously maximized functions
	Examples of continuously maximized functions from noncrossing subspaces
	Some Hidden Convexity Theorems
	Application to orientation finding

	5 | Long step gradient descent
	Introduction to long step gradient descent
	Proof of convergence rate
	Equations and bounds related to constants

	References

