Approximating Sparse Semidefinite Programs

Kevin Shu ${ }^{1}$
${ }^{1}$ Georgia Institute of Technology

Background on Sparse Semidefinite Programming

Semidefinite Programming

$$
\begin{array}{rc}
\text { minimize } & \left\langle B^{0}, X\right\rangle \\
\text { such that } & \left\langle B^{\ell}, X\right\rangle=b_{\ell} \quad \text { for } \ell \in\{1, \ldots, k\} \\
& X \succeq 0
\end{array}
$$

- $X \succeq 0$ means that X is an $n \times n$ positive semidefinite matrix.
- The B^{i} are all $n \times n$ symmetric matrices.

Solving Semidefinite Programs

- Memory costs of solving semidefinite programs are often high in practice, especially when we need to compute Hessians.
- Part of the reason is that there are quadratically many variables.
- How can we improve performance costs of solving semidefinite programs?

Sparsity

Our notion of sparsity will always be parameterized by a graph, G.

Definition

A semidefinite program is G-sparse if it does not use the variables $X_{i j}$ when $i, j \notin E(G)$ in the linear constraints or objective.

Example: Goemans-Williamson semidefinite programs are G-sparse. If $G=C_{4}$ is the 4 -cycle

$$
\begin{array}{r}
\text { minimize } \quad X_{12}+X_{23}+X_{34}+X_{14} \\
\text { such that } \quad X_{11}=X_{22}=X_{33}=X_{44}=1 \\
X \succeq 0
\end{array}
$$

(a) The 4-cycle.

Figure 1: Goemans Williamson SDP for the 4-cycle

Sparsity

We define the G-partial matrices to be symmetric matrices, where entries corresponding to nonedges of G are 'forgotten'.

Definition

A G-partial matrix is PSD-completable if the missing entries can be chosen to make the resulting symmetric matrix PSD.
$\Sigma(G)$ is the convex cone of PSD completable G-partial matrices.

$$
\left(\begin{array}{cccc}
X_{11} & X_{12} & ? & X_{14} \\
X_{12} & X_{22} & X_{23} & ? \\
? & X_{23} & X_{33} & X_{34} \\
X_{14} & ? & X_{34} & X_{44}
\end{array}\right)
$$

Figure 2: $A C_{4}$-partial matrix.

Sparsity

G-sparse SDP's can be thought of as conic optimization problems over a projection of the PSD cone.

For example

$$
\begin{array}{rr}
\operatorname{minimize} & X_{12}+X_{23}+X_{34}+X_{14} \\
\text { such that } \quad X_{11}=X_{22}=X_{33}=X_{44} & =1 \\
X \succeq 0
\end{array}
$$

can be rewritten

$$
\begin{array}{cc}
\text { minimize } & X_{12}+X_{23}+X_{34}+X_{14} \\
\text { such that } & X_{11}=X_{22}=X_{33}=X_{44}=1 \\
\left(\begin{array}{cccc}
X_{11} & X_{12} & ? & X_{14} \\
X_{12} & X_{22} & X_{23} & ? \\
? & X_{23} & X_{33} & X_{34} \\
X_{14} & ? & X_{34} & X_{44}
\end{array}\right) \in \Sigma(G)
\end{array}
$$

Sparsity

Optimization of G-sparse SDP's is equivalent to the problem of linear optimization over slices of $\Sigma(G)$.

Can we do this optimization without using the full SDP?

A Natural Relaxation

Definition

A G-partial matrix is G-locally PSD if all of its fully specified prinicipal submatrices are PSD.
$\mathcal{P}(G)$ is the convex cone of G-locally PSD matrices.

Fully specified prinicipal submatrices are in correspondence with cliques of G.

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & ? & x_{14} \\
x_{12} & x_{22} & x_{23} & ? \\
? & x_{23} & x_{33} & x_{34} \\
x_{14} & ? & x_{34} & x_{44}
\end{array}\right)
$$

A Natural Relaxation

If we have a G-sparse SDP,

$$
\begin{array}{rr}
\text { minimize } & \left\langle B^{0}, X\right\rangle \\
\mathrm{SDP}=\text { such that } & \left\langle B^{\ell}, X\right\rangle=b_{\ell} \quad \text { for } \ell \in\{1, \ldots, k\} \\
& X \in \Sigma(G)
\end{array}
$$

We will denote a modification

$$
\begin{array}{rr}
\text { minimize } & \left\langle B^{0}, X\right\rangle \\
\mathrm{SDP}^{S G}=\text { such that } & \left\langle B^{\ell}, X\right\rangle=b_{\ell} \\
& \text { for } \ell \in\{1, \ldots, k\}
\end{array}
$$

A Natural Relaxation

Advantages

- Smaller PSD conditions are easier to check than larger PSD conditions.
- We don't need to consider variables that aren't in $E(G)$.

A Natural Relaxation

Advantages

- Smaller PSD conditions are easier to check than larger PSD conditions.
- We don't need to consider variables that aren't in $E(G)$.

Disadvantages

- Some graphs have exponentially many cliques
- The approximation need not be good.

Chordal Graphs and Equality

It is natural to ask when the above relaxation is exactly equal, i.e. when $\Sigma(G)=\mathcal{P}(G)$.

This was shown by Grone, Johnson, Sá, and Wolkowicz.

Definition

G is chordal if it has no induced cycles with more than 3 vertices.

Theorem
$\Sigma(G)=\mathcal{P}(G)$ if and only if G is chordal.

Chordal Graphs and Equality

Given a graph G, and a G-sparse SDP, it is standard practice to find a new graph G^{\prime} that is chordal and contains G.

We can then think of a G-sparse SDP as a G^{\prime} sparse SDP, and then use the above theorem to optimize over $\mathcal{P}(G)$ instead of $\Sigma(G)$.

Disadvantages

- Computing a chordal graph containing G with minimal number of edges is NP-hard (there are $O(\log (n))$-factor approximations though).
- Chordal graphs containing G might contain a lot more edges than G.

Approximate Semidefinite
 Programming

Key Question: How well does $\mathcal{P}(G)$ approximate $\Sigma(G)$?
For chordal G, these are equal.
In experimental settings, it is often seen that optimizing over $\mathcal{P}(G)$ is almost equivalent to optimizing over $\Sigma(G)$, even when G is not chordal. How can we quantify this?

Approximate PSDness

For any G, we let I_{G} be the projection of the identity onto the G-partial matrices.

Definition

If X is a G-partial matrix, then $\lambda(X)$ is the largest λ so that

$$
X-\lambda I_{G} \in \Sigma(G)
$$

- $\lambda(X)$ is the largest possible value of the minimum eigenvalue of \hat{X}, where \hat{X} is a completion of X.
- $\lambda(X) \geq 0$ if and only if $X \in \Sigma(G)$.

Definition

For any G,

$$
\epsilon(G)=\max \{-\lambda(X): X \in \mathcal{P}(G), \operatorname{tr}(X)=1\}
$$

This is 'how far from being PSD completable a matrix in $\mathcal{P}(G)$ can be'.

For any $X \in \mathcal{P}(G), X+\epsilon(G) \operatorname{tr}(X) I_{G}$ is PSD completable.

Figure 4: A geometric visualization of $\epsilon(G)$.
$\epsilon(G)$ is the smallest number so that

$$
\tilde{\Sigma}(G) \subseteq \tilde{\mathcal{P}}(G) \subseteq(1+n \epsilon(G)) \tilde{\Sigma}(G) .
$$

Definition

A SDP is said to be of Goemans-Williamson Type if

- Every feasible point satisfies $\operatorname{tr}(X) \leq n$.
- I_{G} is a feasible point.
- The trace of the objective is 0 .
- It is a maximization problem.

Theorem

Let SDP be some G-sparse semidefinite program, and SDP ${ }^{S G}$ be its relaxation.

If α is the value of SDP, and α^{\prime} is the value of $\operatorname{SDP}^{S G}$, then

$$
\alpha \leq \alpha^{\prime} \leq(1+n \epsilon(G)) \alpha
$$

Advantages

- As long as $\epsilon(G)$ is $o\left(\frac{1}{n}\right)$, we get a good approximation.
- Don't need chordal supergraphs, as long as we can enumerate the cliques of G.

Advantages

- As long as $\epsilon(G)$ is $o\left(\frac{1}{n}\right)$, we get a good approximation.
- Don't need chordal supergraphs, as long as we can enumerate the cliques of G.

Disadvantages

- The approximation is not always good..
- Computing $\epsilon(G)$ is a concave minimization problem, which tend to be difficult.

What graphs have $\epsilon(G)=o\left(\frac{1}{n}\right)$?

Computing $\epsilon(G)$

For cycles, we have

Theorem

$$
\epsilon\left(C_{n}\right)=\frac{1}{n}\left(\frac{1}{\cos \left(\frac{\pi}{n}\right)}-1\right)=\theta\left(\frac{1}{n^{3}}\right)
$$

This is the $-\lambda(X)$ where

$$
X=\left(\begin{array}{cccccc}
1 & 1 & ? & ? & \ldots & -1 \\
1 & 1 & 1 & ? & \ldots & ? \\
? & 1 & 1 & 1 & \ldots & ? \\
& & \ldots & & & \\
-1 & ? & ? & ? & \ldots & 1
\end{array}\right)
$$

Key idea is the cycle conditions, and the fact that they are convex in certain parameters.

Definition

The chordal girth of G is the smallest number of vertices in an induced cycle of G with at least 3 vertices, and ∞ if G is chordal.

We denote this by $\gamma(G)$.

Corollary

If G is series parallel, then

$$
\epsilon(G)=\epsilon\left(C_{\gamma(G)}\right)=\theta\left(\frac{1}{\gamma(G)^{3}}\right) .
$$

Theorem

If G and H are graphs, and $K \subseteq G$ and $K \subseteq H$ are cliques, then we denote by $G \oplus H$ the clique sum of G and H.

$$
\epsilon(G \oplus H)=\max \{\epsilon(G), \epsilon(H)\} .
$$

Figure 5: Clique sums are obtained by gluing together two graphs along a clique.

Theorem

If G is a graph, let \hat{G} denote the cone over G, then

$$
\epsilon(\hat{G})=\epsilon(G)
$$

Figure 6: A cone of a graph is a graph that adds a single new vertex to G connected to all vertices of G.

Thickened Graphs

Definition

Given a graph G, a thickening of G is obtained by replacing the edges of G by chordal graphs with marked endpoints.

Figure 7: An example of a thickened graph. To the left, is a graph, and to the right is a thickening, where some of the edges have been replaced by other chordal graphs.

Theorem

Suppose that G is a thickened graph, and e is any edge of G. Let G / e be the contraction of G along the edge e.

$$
\epsilon(G) \leq \epsilon(G / e)
$$

Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces, and then find chordal covers of each piece separately to get a completion of G to a thickened graph.

Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces, and then find chordal covers of each piece separately to get a completion of G to a thickened graph.

Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces, and then find chordal covers of each piece separately to get a completion of G to a thickened graph.

Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces, and then find chordal covers of each piece separately to get a completion of G to a thickened graph.

Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces, and then find chordal covers of each piece separately to get a completion of G to a thickened graph.

Theorem

If G is a graph, and H is a thickening of G obtained by replacing all of the edges of G by paths of length ℓ, then

$$
\epsilon(H) \leq \epsilon\left(C_{\ell}\right)
$$

