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Background on Sparse Semidefinite

Programming
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Semidefinite Programming

minimize ⟨B0,X ⟩
such that ⟨Bℓ,X ⟩ = bℓ for ℓ ∈ {1, . . . , k}

X ⪰ 0

• X ⪰ 0 means that X is an n × n positive semidefinite matrix.

• The B i are all n × n symmetric matrices.
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Solving Semidefinite Programs

• Memory costs of solving semidefinite programs are often high

in practice, especially when we need to compute Hessians.

• Part of the reason is that there are quadratically many

variables.

• How can we improve performance costs of solving semidefinite

programs?
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Sparsity

Our notion of sparsity will always be parameterized by a graph,

G .

Definition
A semidefinite program is G -sparse if it does not use the

variables Xij when i , j ̸∈ E (G ) in the linear constraints or

objective.
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Example: Goemans-Williamson semidefinite programs are

G -sparse. If G = C4 is the 4-cycle

3
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(a) The 4-cycle.

minimize X12 + X23 + X34 + X14

such that X11 = X22 = X33 = X44 = 1

X ⪰ 0

Figure 1: Goemans Williamson SDP for the 4-cycle
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Sparsity

We define the G -partial matrices to be symmetric matrices, where

entries corresponding to nonedges of G are ‘forgotten’.

Definition
A G -partial matrix is PSD-completable if the missing entries

can be chosen to make the resulting symmetric matrix PSD.

Σ(G ) is the convex cone of PSD completable G -partial matrices.


X11 X12 ? X14

X12 X22 X23 ?

? X23 X33 X34

X14 ? X34 X44


Figure 2: A C4-partial matrix.
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Sparsity

G -sparse SDP’s can be thought of as conic optimization problems

over a projection of the PSD cone.

For example

minimize X12 + X23 + X34 + X14

such that X11 = X22 = X33 = X44 = 1

X ⪰ 0

can be rewritten

minimize X12 + X23 + X34 + X14

such that X11 = X22 = X33 = X44 = 1
X11 X12 ? X14

X12 X22 X23 ?

? X23 X33 X34

X14 ? X34 X44

 ∈ Σ(G )
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Sparsity

Optimization of G -sparse SDP’s is equivalent to the problem of

linear optimization over slices of Σ(G ).

Can we do this optimization without using the full SDP?
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A Natural Relaxation

Definition
A G -partial matrix is G -locally PSD if all of its fully specified

prinicipal submatrices are PSD.

P(G ) is the convex cone of G -locally PSD matrices.

Fully specified prinicipal submatrices are in correspondence with

cliques of G .


X11 X12 ? X14

X12 X22 X23 ?

? X23 X33 X34

X14 ? X34 X44
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A Natural Relaxation

If we have a G -sparse SDP,

SDP =

minimize ⟨B0,X ⟩
such that ⟨Bℓ,X ⟩ = bℓ for ℓ ∈ {1, . . . , k}

X ∈ Σ(G ),

We will denote a modification

SDPSG =

minimize ⟨B0,X ⟩
such that ⟨Bℓ,X ⟩ = bℓ for ℓ ∈ {1, . . . , k}

X ∈ P(G )
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A Natural Relaxation

Advantages

• Smaller PSD conditions are easier to check than larger PSD

conditions.

• We don’t need to consider variables that aren’t in E (G ).

Disadvantages

• Some graphs have exponentially many cliques

• The approximation need not be good.
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Chordal Graphs and Equality

It is natural to ask when the above relaxation is exactly equal, i.e.

when Σ(G ) = P(G ).

This was shown by Grone, Johnson, Sá, and Wolkowicz.

Definition
G is chordal if it has no induced cycles with more than 3 vertices.

Theorem

Σ(G ) = P(G ) if and only if G is chordal.
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Chordal Graphs and Equality

Given a graph G , and a G -sparse SDP, it is standard practice to

find a new graph G ′ that is chordal and contains G .

We can then think of a G -sparse SDP as a G ′ sparse SDP, and

then use the above theorem to optimize over P(G ) instead of

Σ(G ).

Disadvantages

• Computing a chordal graph containing G with minimal

number of edges is NP-hard (there are O(log(n))-factor

approximations though).

• Chordal graphs containing G might contain a lot more edges

than G .
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Approximate Semidefinite

Programming
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Key Question: How well does P(G ) approximate Σ(G )?

For chordal G , these are equal.

In experimental settings, it is often seen that optimizing over P(G )

is almost equivalent to optimizing over Σ(G ), even when G is not

chordal. How can we quantify this?
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Approximate PSDness

For any G , we let IG be the projection of the identity onto the

G -partial matrices.

Definition

If X is a G -partial matrix, then λ(X ) is the largest λ so that

X − λIG ∈ Σ(G ).

• λ(X ) is the largest possible value of the minimum eigenvalue

of X̂ , where X̂ is a completion of X .

• λ(X ) ≥ 0 if and only if X ∈ Σ(G ).
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Definition
For any G ,

ϵ(G ) = max{−λ(X ) : X ∈ P(G ), tr(X ) = 1}.

This is ‘how far from being PSD completable a matrix in P(G ) can

be’.

For any X ∈ P(G ), X + ϵ(G ) tr(X )IG is PSD completable.
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Figure 4: A geometric visualization of ϵ(G ).

ϵ(G ) is the smallest number so that

Σ̃(G ) ⊆ P̃(G ) ⊆ (1 + nϵ(G ))Σ̃(G ).
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Definition
A SDP is said to be of Goemans-Williamson Type if

• Every feasible point satisfies tr(X ) ≤ n.

• IG is a feasible point.

• The trace of the objective is 0.

• It is a maximization problem.
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Theorem

Let SDP be some G -sparse semidefinite program, and SDPSG be

its relaxation.

If α is the value of SDP, and α′ is the value of SDPSG , then

α ≤ α′ ≤ (1 + nϵ(G ))α.
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Advantages

• As long as ϵ(G ) is o( 1n ), we get a good approximation.

• Don’t need chordal supergraphs, as long as we can enumerate

the cliques of G .

Disadvantages

• The approximation is not always good..

• Computing ϵ(G ) is a concave minimization problem, which

tend to be difficult.

What graphs have ϵ(G ) = o( 1n )?

22



Advantages

• As long as ϵ(G ) is o( 1n ), we get a good approximation.

• Don’t need chordal supergraphs, as long as we can enumerate

the cliques of G .

Disadvantages

• The approximation is not always good..

• Computing ϵ(G ) is a concave minimization problem, which

tend to be difficult.

What graphs have ϵ(G ) = o( 1n )?

22



Computing ϵ(G )
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For cycles, we have

Theorem

ϵ(Cn) =
1

n

(
1

cos(πn )
− 1

)
= θ(

1

n3
).

This is the −λ(X ) where

X =


1 1 ? ? . . . −1

1 1 1 ? . . . ?

? 1 1 1 . . . ?

. . .

−1 ? ? ? . . . 1

 .

Key idea is the cycle conditions, and the fact that they are convex

in certain parameters.
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Definition
The chordal girth of G is the smallest number of vertices in an

induced cycle of G with at least 3 vertices, and ∞ if G is chordal.

We denote this by γ(G ).

Corollary
If G is series parallel, then

ϵ(G ) = ϵ(Cγ(G)) = θ(
1

γ(G )3
).
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Theorem
If G and H are graphs, and K ⊆ G and K ⊆ H are cliques, then

we denote by G ⊕ H the clique sum of G and H.

ϵ(G ⊕ H) = max{ϵ(G ), ϵ(H)}.

Figure 5: Clique sums are obtained by gluing together two graphs along

a clique.
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Theorem

If G is a graph, let Ĝ denote the cone over G , then

ϵ(Ĝ ) = ϵ(G ).

Figure 6: A cone of a graph is a graph that adds a single new vertex to

G connected to all vertices of G .
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Thickened Graphs
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Definition
Given a graph G , a thickening of G is obtained by replacing the

edges of G by chordal graphs with marked endpoints.

Figure 7: An example of a thickened graph. To the left, is a graph, and

to the right is a thickening, where some of the edges have been replaced

by other chordal graphs.
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Theorem
Suppose that G is a thickened graph, and e is any edge of G .

Let G/e be the contraction of G along the edge e.

ϵ(G ) ≤ ϵ(G/e).
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Completing to Thickened Graphs

If G is any graph, and we can break the graph down into pieces,

and then find chordal covers of each piece separately to get a

completion of G to a thickened graph.
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Theorem
If G is a graph, and H is a thickening of G obtained by replacing

all of the edges of G by paths of length ℓ, then

ϵ(H) ≤ ϵ(Cℓ)
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