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Computer optimization plays an central role in society as it becomes increasingly capable of
providing solutions to problems beyond what humans can understand. In many applications of
optimization, it is not sufficient to produce a good locally optimal solution to a problem; it is also
necessary to be able to confidently assert that no better solution exists. In applications such as
robotics or industrial engineering, it is often necessary to guarantee that a system does not exceed
some critical capacity restriction, which can also be viewed as asserting a global optimality guar-
antee for some optimization problem. I approach the task of finding globally optimal solutions to
difficult nonconvex optimization problems by giving novel convex reparametrizations of nonconvex
problems, using ideas from topology, geometry, and algebra. I will give examples of my past work
exploiting such ‘hidden convexity’ in the context of manifold optimization, the design of algorithms,
and other applications of ‘log-concavity’.

1 Convex Projections of Manifolds

Figure 1: A depiction of a
convex 2 dimensional shadow
of a complicated nonconvex 3
dimensional shape.

Optimization problems over complicated domains, such as noncon-
vex manifolds, are abundant in applications ranging from robotics
and astronomy. However, in most applications, it is only necessary
to understand the range of values of a small number of functions
of the complicated variable: specifically those necessary to express
the objective and constraints. From a geometric perspective, this
means that the optimization problem can be re-expressed in terms
of a low dimensional projection of the complicated domain; we are
therefore interested in understanding when such projections give
rise to simpler optimization problems.

As an example, in [10], I showed that any two dimensional linear
projection of the set of rotation matrices, SO(n) is convex, a fact
which has applications in astronomy for orientation finding.

In [1], I consider the following general question: If X is a set,
and f : X → Rk is a function, then under what conditions is the image f(X) is convex? If f(X) is
convex, then any optimization problem over X which only depends linearly on f can be formulated
as a convex optimization problem. In order to tackle this question, I considered a Lagrangian
associated to the function f : the function L(λ, x) = ⟨λ, f(x)⟩. If X were Euclidean space, and each
fi were strictly convex, then it is clear that as the Lagrange multipliers λ vary, the minimizer x ∈ X
of the function ⟨λ, f(x)⟩ changes continuously. This fact underlies a variety of algorithms such as
interior point methods and augmented Lagrangians, which associate to a constrained optimization
problem a family of unconstrained problems and track the solution of that family of problems as
the multipliers vary. The main result of [1] is in some sense a converse to this fact:

Theorem 1.1 (Informal). Let X be a compact topological space and f : X → Rk be continuous. If
the minimizer of the Lagrangian, argminx∈X⟨λ, f(x)⟩, is continuous in λ, then f(X) is convex.
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This result can easily recover many known results about hidden convexity, including Brickman’s
theorem, Dine’s theorem, my earlier result on projections of the set of rotation matrices, as well
as the main theorems of several papers on linear projections of the Stiefel manifold and quadratic
maps on the sphere.

Algorithmically, I also showed that it is possible to solve problems with this property by tracking
the continuous path of solutions to the Lagrangian optimization problem as the multipliers vary. I
analyzed such an algorithm in the case where the domain X is a Riemannian manifold.

2 Design of Algorithms via Convex Optimization

A first order method minimizes a function f : Rd → R using first order information about f , i.e.
the value of f and its gradients at a sequence of points x0, . . . , xn ∈ Rd. Such methods, including
gradient descent, are cornerstones of modern optimization.

I am tackling the problem of designing first order methods for convex optimization, i.e. sys-
tematically understanding how to choose query points for optimal convergence rates.

In my first work on this subject, I considered query points defined by xi+1 = xi − hi∇f(xi)
for fixed h0, . . . , hn−1. Until recently, it was not known whether there exist step sizes hi which
substantially improved the convergence rate of this method over constant step sizes. I showed in
[9] that it is possible to improve on the guarantee offered by constant step size gradient descent
by a polynomial factor using a sequence of unbounded and nonmonotonic step sizes. This has led
to a flurry of activity on acceleration using improvements in step size choices, including our own
follow up work showing that these step sizes are part of a much larger family of step sizes which
have interesting algebraic properties[8].

(a) Step sizes for gradient descent with the
best known convergence rate with 50 steps.
Note that these step sizes are both non-
monotonic and not symmetric.

(b) Comparison of different algorithms
against our method (SPGM) and limited
memory versions (SPGM-10).

In [7], I introduced a new algorithm called SPGM which offer a beyond-worst-case guarantee for
convex optimization. Specifically, I found an algorithm for minimizing a smooth convex function
which has the property that after any number of iterations, the algorithm offers the best possible
convergence guarantee even amongst all algorithms which see those initial gradients and function
values. That is, before seeing any gradients, our algorithm offers a guarantee on its final subopti-
mality which is best possible, and as additional gradients come in, the algorithm is able to adjust
to the new gradient information in an optimal fashion by solving a simple convex subproblem. Our
results are also competitive with algorithmic staples such as BFGS in running time.
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3 Applications of Log-Concavity

I have studied several basic linear algebra problems from the point of view of log-concave polyno-
mials which have been the subject of much recent attention. I have studied such polynomials in
their own right in [3, 4], but will focus on concrete applications here.

Unbiased Regression using Random Eigenvalues Suppose µ is a probability distribution
on R, and that we are given the ability to evaluate a function f : R → R at an arbitrary x ∈ R.
How can we find a polynomial p of degree at most d minimizing Ex∼µ[|p(x) − f(x)|2], using as
few samples points from f as possible? We show in [6] that the following is true: take X to be a
d+1×d+1 random Hermitian matrix whose density depends on µ. Let λ0, . . . , λd be the eigenvalues
of X (which are random). If we interpolate a polynomial p̂ so that for each i = 1, . . . , d + 1,
p̂(λi(X)) = f(λi(X)), then E[p̂] is the optimal solution to the polynomial regression problem. We
also use random matrix theory to give both O(d log(d)) time sampling algorithms and optimal
sample complexity in many cases. Underlying this result is the theory of determinantal point
processes, which are closely related to log-concave polynomials.

Spot-checking PSDness Suppose that we know that all k × k submatrices of a large n × n
matrix X are positive semidefinite (PSD). How far can X be from being PSD? I showed in [2]
that λmin(X) ≥ − k−n

n(k−1)tr(X), and that this is tight. Minimizing this objective over the space
of matrices with PSD submatrices is nonconvex, but I was able to give a tight convex relaxation.
This has applications in semidefinite programming, where rather than checking that a large matrix
is PSD, it can be cheaper and more efficient to spot-check some small submatrices for being PSD.
See also [5], where the same idea is used to understand sparse semidefinite programs.

4 Future Directions

My past work has demonstrated a number of incarnations of the idea of hidden convexity and its
applications. My broad goal in the future is to develop a deeper systematic understanding of hidden
convexity and to use that understanding to develop further applications.

One phenomenon that I am particularly interested in exploring is what I refer to as ‘projection
simplicity’. In convex optimization, there is a well established notion of ‘extension complexity’,
in which a convex optimization problem (particularly a linear program) can be made simpler by
actually lifting it into a higher dimensional space. I propose that we should also understand the
‘dual’ notion of projection simplicity, wherein a complicated high dimensional problem can be
projected into a lower dimensional space which captures the relevant features of the problem but
which yields a simpler optimization problem. My work on convex projections of manifolds is one
example in which an intractable optimization problem can be projected into a simpler optimization
problem, but I am also interested in broader questions along these lines. For example, rather than
understanding whether or not a projection of a manifold is convex on the nose, I am interested in
approximate notions of convexity, and whether the topological conditions I described can be made
quantitative in such a way as to provide approximation results.
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